Make the static enforcement of accesses in noescape closures stored-property
sensitive. This will relax the existing enforcement so that the following is
not diagnosed:
struct MyStruct {
var x = X()
var y = Y()
mutating
func foo() {
x.mutatesAndTakesClosure() {
_ = y.read() // no-warning
}
}
}
To do this, update the access summary analysis to summarize accesses to
subpaths of a capture.
rdar://problem/32987932
The problem here is that we were performing a naive negative FileCheck test for
retain/release. In certain modes, we would not have any retains/releases along
normal control paths but would have retains on unreachable paths. This test only
is trying to test if normal code paths have this issue.
To work around this issue, I created a small utility pass that prunes all
non-unreachable instructions from blocks with an unreachable terminator. This is
useful functionality in general when analyzing SIL since often times one will
have large fatal error blocks that disguise the true behavior of the
function. In this specific case, I just pipe in the normal sil output and run it
through sil-opt. sil-opt then runs just the utility pass and I then FileCheck
that sil-opt output.
rdar://30181104
Make the static enforcement of accesses in noescape closures stored-property
sensitive. This will relax the existing enforcement so that the following is
not diagnosed:
struct MyStruct {
var x = X()
var y = Y()
mutating
func foo() {
x.mutatesAndTakesClosure() {
_ = y.read()
}
}
}
To do this, update the access summary analysis to be stored-property sensitive.
rdar://problem/32987932
Add an interprocedural SIL analysis pass that summarizes the accesses that
closures make on their @inout_aliasable captures. This will be used to
statically enforce exclusivity for calls to functions that take noescape
closures.
The analysis summarizes the accesses on each argument independently and
uses the BottomUpIPAnalysis utility class to iterate to a fixed point when
there are cycles in the call graph.
For now, the analysis is not stored-property-sensitive -- that will come in a
later commit.
Till now createApply, createTryApply, createPartialApply were taking some arguments like SubstCalleeType or ResultType. But these arguments are redundant and can be easily derived from other arguments of these functions. There is no need to put the burden of their computation on the clients of these APIs.
The removal of these redundant parameters simplifies the APIs and reduces the possibility of providing mismatched types by clients, which often happened in the past.
At some point, pass definitions were heavily macro-ized. Pass
descriptive names were added in two places. This is not only redundant
but a source of confusion. You could waste a lot of time grepping for
the wrong string. I removed all the getName() overrides which, at
around 90 passes, was a fairly significant amount of code bloat.
Any pass that we want to be able to invoke by name from a tool
(sil-opt) or pipeline plan *should* have unique type name, enum value,
commend-line string, and name string. I removed a comment about the
various inliner passes that contradicted that.
Side note: We should be consistent with the policy that a pass is
identified by its type. We have a couple passes, LICM and CSE, which
currently violate that convention.
Also, add a third [serializable] state for functions whose bodies we
*can* serialize, but only do so if they're referenced from another
serialized function.
This will be used for bodies synthesized for imported definitions,
such as init(rawValue:), etc, and various thunks, but for now this
change is NFC.
There are now separate functions for function addition and deletion instead of InvalidationKind::Function.
Also, there is a new function for witness/vtable invalidations.
rdar://problem/29311657
Previously it was part of swiftBasic.
The demangler library does not depend on llvm (except some header-only utilities like StringRef). Putting it into its own library makes sure that no llvm stuff will be linked into clients which use the demangler library.
This change also contains other refactoring, like moving demangler code into different files. This makes it easier to remove the old demangler from the runtime library when we switch to the new symbol mangling.
Also in this commit: remove some unused API functions from the demangler Context.
fixes rdar://problem/30503344
SubstitutionList is going to be a more compact representation of
a SubstitutionMap, suitable for inline allocation inside another
object.
For now, it's just a typedef for ArrayRef<Substitution>.
We do this by creating a shared function that calls the builtin int_trap.
Eventually I am going to use this to test a runtime bug reducer. But that is for
another day.
Previously, bug reducer tester would just assert when it saw a direct apply to
its target function. Now we add support for also causing a miscompile by just
deleting the apply. This is tested by eliminating an apply to putchar to ensure
we are not dependent on any stdlib details.
I fixed a few things. Now I am finally hitting cases where we have
guaranteed/owned arguments, so I really need to do the SILGen work. But this was
a good first step.
rdar://29671437
Changes:
* Terminate all namespaces with the correct closing comment.
* Make sure argument names in comments match the corresponding parameter name.
* Remove redundant get() calls on smart pointers.
* Prefer using "override" or "final" instead of "virtual". Remove "virtual" where appropriate.
This pass works by blowing up if it finds an apply that calls a function
specified via the cl command line option 'bug-reducer-tester-target-func'. This
makes it easy to test sil-bug-reducer.
We also either remove or make private the addPass* functions on SILPassManager,
so the only way to execute passes via SILPassManager is by creating a
SILPassPipelinePlan. This beyond adding uniformity ensures that we always
resetAndRemoveTransformations properly after a pipeline is run.
Before this commit all code relating to handling arguments in SILBasicBlock had
somewhere in the name BB. This is redundant given that the class's name is
already SILBasicBlock. This commit drops those names.
Some examples:
getBBArg() => getArgument()
BBArgList => ArgumentList
bbarg_begin() => args_begin()
This is a cleanup for SILParsing/Printing. I verified that everything was
spelled correctly by taking the current parsing switch moving that into a file,
regenerating it using the .def file and then diffed them. The diff was the same.
rdar://28685236
It makes sense to turn the new epilogue retain/release matcher to an Analysis.
Its currently a data flow with an entry API point. This saves on compilation time,
even though it does not seem to be very expensive right now. But it is a iterative
data flow which could be expensive with large CFGs.
rdar://28178736
This consists of 3 parts:
1) Extend CallerAnalysis to also provide information if a function is partially applied
2) A new DeadArgSignatureOpt pass, similar to FunctionSignatureOpts, which just specializes for dead arguments of partially applied functions.
3) Let CapturePropagation eliminate such partial_apply instructions and replace them with a thin_to_thick conversion of the specialized functions.
This optimzation improves benchmarks where static struct or class functions are passed as a closure (e.g. -20% for SortStrings).
Such functions have a additional metatype parameter. We used to create a partial_apply in this case, which allocates a context, etc.
But this is not necessary as the metatype parameter is not used in most cases.
rdar://problem/27513085