Introduce the SIL instruction peer_method, which references a method
in the given class or one of its superclasses (but not a subclass). It
IRGen's to objc_msgSendSuper[Stret] (vs. super_method IRGen'ing to
objc_msgSendSuper[Stret]2 for superclass lookup).
Use peer_method for initializer delegation to a foreign initializer
(i.e., an init-family method written in Objective-C) to close the
safety loophole introduced by initializer delegation in r11965. The
loophole still exists, but can only be triggered from Objective-C.
Teach definite initialization that peer_method really isn't a use of
self.
Swift SVN r11992
Treat the interface types of SILFunctionTypes as the canonical representation in the verifier. Do a bunch of supporting and annoyingly irreducible work to enable this:
- Stop trying to uncurry generic parameter lists during type lowering and preserve the structure of AST GenericParamLists. This makes mapping dependent types into contexts easier.
- Properly walk generic parameter lists at all depths when grooming substitution vectors for use with substGenericArgs interfaces.
- Reseat the generic parameter lists created for protocol_method results so that we don't expect the outer Self archetype to be unbound; it's provided by the extra data of the result.
- Hack SILFunctionType serialization never to use a decl reference when serializing its generic param list. When this happens, we get incorrect archetypes. This is a gross hack, but when we're able to jump all the way to interface types, it can go away.
Putting these ducks in a row nicely un-XFAILs TextFormatting.swift.
Swift SVN r11989
For archetypes the conformance information is context dependent, the conformance
array is either empty or full of nulls and can be ignored. We uniform the two
cases by passing in an array of null pointers to writeConformances.
rdar://15693816
Swift SVN r11940
Attribute field is a fixed 2-bit field, but cast kind exceeds 4,
so using 2-bit attribute field for cast kind will cause overflow.
The fix is to add a record for the cast instruction with a 4-bit
kind field instead of a 2-bit attribute field.
Swift SVN r11938
This is step 1 of implementing the new Container/Sequence/Stream
protocols. See test/Prototypes/Container.swift for the complete picture
of where this is headed.
Swift SVN r11924
SIL instruction. Implement IR-gen support for same. Fix
the parsing of SIL string literals to properly unescape them.
SIL-gen still emits UTF8 literals unconditionally.
Swift SVN r11904
with qualifiers on it, we have two distinct types:
- LValueType(T) aka @lvalue T, which is used for mutable values on the LHS of an
assignment in the typechecker.
- InOutType(T) aka @inout T, which is used for @inout arguments, and the implicit
@inout self argument of mutable methods on value types. This type is also used
at the SIL level for address types.
While I detangled a number of cases that were checking for LValueType (without checking
qualifiers) and only meant @inout or @lvalue, there is more to be done here. Notably,
getRValueType() still strips @inout, which is totally and unbearably wrong.
Swift SVN r11727
Lower metatype types as @thin or @thick based on whether the type is static and whether the abstraction pattern allows for a thin metatype. Add a '@thick' attribute and require SIL metatypes to always be annotated with either '@thin' or '@thick' to distinguish them from unlowered metatypes.
Swift SVN r11525
We'll need to perform name lookup based on the file-level
DeclContext*, so the module no longer suffices. No functionality
change here yet.
Swift SVN r11523
(various) FunctionType::get's, ArrayType::get,
ArraySliceType::get, OptionalType::get, and a few
other places.
There is more to be done here, but this is all I plan to do
for now.
Swift SVN r11497
This is a structural baby step toward lazily filling in protocol
conformances. We always build a ProtocolConformance, then mark it
either "complete" (when it's well-formed) or "invalid" (when it's
ill-formed). At present, the only benefit to this is that it slows
diagnostic cascades from invalid conformances.
Swift SVN r11492
...rather than a raw pointer that points to a buffer with space for N
elements. Just because we *can* get N from context doesn't mean it's
convenient/safe.
No functionality change.
Swift SVN r11488
typealias MyInt: ForwardIndex = Int
There is no real reason to allow this; it's just a static_assert that Int
conforms to ForwardIndex, which would be better spelled some other way.
This only applies to concrete typealiases, i.e. those that simply alias an
underlying type. Associated types can still have both inheritance clauses
and a (default) underlying type.
Swift SVN r11481
- Switch @mutable to be a tri-state attribute that is invertable with @!mutable.
- Move the semantic form of 'mutable' to being a bit on FuncDecl instead of
something in DeclAttrs. The former is a binary bit, the later is a tristate
which differentiates between "not present", "present and set" "present and inverted".
- Diagnose some invalid uses of @mutable, e.g. on class methods.
- Make setters default to mutable, and allow them to be switched with @!mutable.
Swift SVN r11439
Previously, cross-references just carried a chain of identifiers and a
top-level module, plus a type to validate against, a generic parameter index,
or an operator fixity. However, referencing "the first generic parameter
of the prefix function ++ that takes a ForwardIndex" requires /all three/
of these filters to unambiguously select the right declaration.
Now, cross-references consist of a chain of trailing records, one for each
link in the path. There are (currently) five kinds of links:
Type: a declaration that cannot have overloads
Value: a declaration that can have overloads (filtered by type)
Extension: filter to decls within extensions on another module
Operator:
- as the first path piece, an operator declaration
- as a later path piece, a fixity filter for operator functions
Generic Param: an indexed generic parameter of the previous result
This should allow us to uniquely cross-reference any Swift declaration we
need to.
Swift SVN r11399
A SpecializedProtocolConformance intentionally contains all of the
information we need to synthesize the type witnesses from the
underlying (generic) conformance. Do so lazily rather than eagerly,
because we won't always need all of them.
As a nice side effect, we no longer need to serialize the witnesses of
these specialized protocol conformances, so we can save some space in
the Swift module file.
Swift SVN r11303
That is, if we need a type MyIndex<T> to be a valid ForwardIndex, we should
be able to find it in the conformance for BidirectionalIndex, which inherits
from ForwardIndex.
<rdar://problem/15484898>
Swift SVN r11270
In doing so, make serialization more deterministic. It was depending
on DenseMap ordering for both type and value witnesses. Now, serialize
the witnesses in the declaration order of the requirements.
Swift SVN r11267
The only reason to do this was in case an extension adopted a compiler-known
protocol, but that has long ben taken care of by
ModuleFile::loadDeclsConformingTo.
Swift SVN r11224
There shouldn't ever be a reason to do this: if a conversion function is
ever selected by the type-checker, it's because the type the conversion
lives on was suggested by another constraint, which means we can do a
normal lookup for the conversion function.
This is actually the only thing being eagerly deserialized, so remove the
notion of eager deserialization altogether.
Swift SVN r11220
NominalTypeDecls and ExtensionDecls have a list of members. Rather than
eagerly populating that list when the nominal or extension is just referenced,
just include a pointer back to the ModuleFile, so that they can be
deserialized when we actually look into the decl. The design here is
general enough that we could do something similar with imported Clang decls.
Clang is even more lazy here: the on-disk representation is a hash table,
so lookup only forces deserialization of members with the same name. We
probably want that some day, but this might be enough to get by for now.
This is groundwork for loading partial ASTs, where eagerly deserializing
members leads to circular references we're not able to handle.
Swift SVN r11219