Checking each module dependency info if it is up-to-date with respect to when the cache contents were serialized in a prior scan.
- Add a timestamp field to the serialization format for the dependency scanner cache
- Add a flag "-validate-prior-dependency-scan-cache" which, when combined with "-load-dependency-scan-cache" will have the scanner prune dependencies from the deserialized cache which have inputs that are newer than the prior scan itself
With the above in-place, the scan otherwise proceeds as-is, getting cache hits for entries still valid since the prior scan.
Instead, each scan's 'ModuleDependenciesCache' will hold all of the data corresponding to discovered module dependencies.
The initial design presumed the possibility of sharing a global scanning cache amongs different scanner invocations, possibly even different concurrent scanner invocations.
This change also deprecates two libSwiftScan entry-points: 'swiftscan_scanner_cache_load' and 'swiftscan_scanner_cache_serialize'. They never ended up getting used, and since this code has been largely stale, we are confident they have not otherwise had users, and they do not fit with this design.
A follow-up change will re-introduce moduele dependency cache serialization on a per-query basis and bring the binary format up-to-date.
Instead, each scan's 'ModuleDependenciesCache' will hold all of the data corresponding to discovered module dependencies.
The initial design presumed the possibility of sharing a global scanning cache amongs different scanner invocations, possibly even different concurrent scanner invocations.
This change also deprecates two libSwiftScan entry-points: 'swiftscan_scanner_cache_load' and 'swiftscan_scanner_cache_serialize'. They never ended up getting used, and since this code has been largely stale, we are confident they have not otherwise had users, and they do not fit with this design.
A follow-up change will re-introduce moduele dependency cache serialization on a per-query basis and bring the binary format up-to-date.
This change refactors the top-level dependency scanning flow to follow the following procedure:
Scan():
1. From the source target under scan, query all imported module identifiers for a *Swift* module. Leave unresolved identifiers unresolved. Proceed transitively to build a *Swift* module dependency graph.
2. Take every unresolved import identifier in the graph from (1) and, assuming that it must be a Clang module, dispatch all of them to be queried in-parallel by the scanner's worker pool.
3. Resolve bridging header Clang module dpendencies
4. Resolve all Swift overlay dependencies, relying on all Clang modules collected in (2) and (3)
5. For the source target under scan, use all of the above discovered module dependencies to resolve all cross-import overlay dependencies
Improve swift dependency scanner by validating and selecting dependency
module into scanner. This provides benefits that:
* Build system does not need to schedule interface compilation task if
the candidate module is picked, it can just use the candidate module
directly.
* There is no need for forwarding module in the explicit module build.
Since the build system is coordinating the build, there is no need for
the forwarding module in the module cache to avoid duplicated work,
* This also correctly supports all the module loading modes in the
dependency scanner.
This is achieved by only adding validate and up-to-date binary module as
the candidate module for swift interface module dependency. This allows
caching build to construct the correct dependency in the CAS. If there
is a candidate module for the interface module, dependency scanner will
return a binary module dependency in the dependency graph.
The legacy behavior is mostly preserved with a hidden frontend flag
`-no-scanner-module-validation`, while the scanner output is mostly
interchangeable with new scanner behavior with `prefer-interface` module
loading mode except the candidate module will not be returned.
rdar://123711823
Currently, `-direct-clang-cc1-module-build` and `-only-use-extra-clang-opts`
have to be passed together for clang importer creation to succeed.
Missing either will result in error. Simplified the swift-frontend flags
by removing `-only-use-extra-clang-opts` and let
`-direct-clang-cc1-module-build` to do both.
In case import resolution order somehow sometimes matters, it's prudent to process/resolve/locate implicitly-imported modules first.
Resolves rdar://113917657
dependencies
It is valuable for clients to be able to distinguish which dependencies of a
Swift module originated from 'import' statements, and which ones are implicit
dependency Swift overlays of imported Clang modules.
The code of `ScanDependencies.cpp` was creating invalid JSON since #66031
because in the case of having `extraPcmArgs` and `swiftOverlayDependencies`,
but not `bridgingHeader`, a comma will not be added at the end of
`extraPcmArgs`, creating an invalid JSON file. Additionally that same PR
added a trailing comma at the end of the `swiftOverlayDependencies`, which
valid JSON does not allow, but that bug was removed in #66366.
Both problems are, however, present in the 5.9 branch, because #66936
included #66031, but not #66366.
Besides fixing the problem in `ScanDependencies.cpp` I modified every test
that uses `--scan-dependencies` to pass the produced JSON through
Python's `json.tool` in order to validate proper JSON is produced. In
most cases I was able to pipe the output of the tool into `FileCheck`,
but in some cases the validation is done by itself because the checks
depend on the exact format generated by `--scan-dependencies`. In
a couple of tests I added a call to `FileCheck` that seemed to be
missing.
Without these changes, two tests seems to be generating invalid JSON in
my machine:
- `ScanDependencies/local_cache_consistency.swift` (which outputs `Expecting ',' delimiter: line 525 column 11 (char 22799)`)
- `ScanDependencies/placholder_overlay_deps.swift`
- '-o <output_path>'
- '-disable-implicit-swift-modules'
- '-Xcc -fno-implicit-modules' and '-Xcc -fno-implicit-module-maps'
- '-candidate-module-file'
These were previously supplied by the driver. Instead, they will now be ready to be run directly from the dependency scanner's output.
Do this by computing a transitive closure on the computed dependency graph, relying on the fact that it is a DAG.
The used algorithm is:
```
for each v ∈ V {
T(v) = { v }
}
for v ∈ V in reverse topological order {
for each (v, w) ∈ E {
T(v) = T(v) ∪ T(w)
}
}
```
This changes the scanner's behavior to "resolve" a discovered module's dependencies to a set of Module IDs: module name + module kind (swift textual, swift binary, clang, etc.).
The 'ModuleDependencyInfo' objects that are stored in the dependency scanner's cache now carry a set of kind-qualified ModuleIDs for their dependencies, in addition to unqualified imported module names of their dependencies.
Previously, the scanner's internal state would cache a module dependnecy as having its own set of dependencies which were stored as names of imported modules. This led to a design where any time we needed to process the dependency downstream from its discovery (e.g. cycle detection, graph construction), we had to query the ASTContext to resolve this dependency's imports, which shouldn't be necessary. Now, upon discovery, we "resolve" a discovered dependency by executing a lookup for each of its imported module names (this operation happens regardless of this patch) and store a fully-resolved set of dependencies in the dependency module info.
Moreover, looking up a given module dependency by name (via `ASTContext`'s `getModuleDependencies`) would result in iterating over the scanner's module "loaders" and querying each for the module name. The corresponding modules would then check the scanner's cache for a respective discovered module, and if no such module is found the "loader" would search the filesystem.
This meant that in practice, we searched the filesystem on many occasions where we actually had cached the required dependency, as follows:
Suppose we had previously discovered a Clang module "foo" and cached its dependency info.
-> ASTContext.getModuleDependencies("foo")
--> (1) Swift Module "Loader" checks caches for a Swift module "foo" and doesn't find one, so it searches the filesystem for "foo" and fails to find one.
--> (2) Clang Module "Loader" checks caches for a Clang module "foo", finds one and returns it to the client.
This means that we were always searching the filesystem in (1) even if we knew that to be futile.
With this change, queries to `ASTContext`'s `getModuleDependencies` will always check all the caches first, and only delegate to the scanner "loaders" if no cached dependency is found. The loaders are then no longer in the business of checking the cached contents.
To handle cases in the scanner where we must only lookup either a Swift-only module or a Clang-only module, this patch splits 'getModuleDependencies' into an alrady-existing 'getSwiftModuleDependencies' and a newly-added 'getClangModuleDependencies'.
Using the serialization format added in https://github.com/apple/swift/pull/37585.
- Add load/save code for the `-scan-dependencies` code-path.
- Add `libSwiftDriver` entry-points to load/store the cache of a given scanner instance.