All places where `invalid member ref` fix/diagnostic is used already
have a reference to the potential member choice declaration, which
diagnostic could take advantage of.
This is useful for `CSDiag` when it detects that all
overload choices have the same problem. Since there
are going to be no solutions, choice declaration could
be supplied to `invalid ref` diagnostic directly.
Resolves: rdar://problem/50467583
Resolves: rdar://problem/50682022
Resolves: rdar://problem/50909555
Extend use of `missing protocol conformance` fix to cover contextual
failures, such as:
- Assignment mismatches, where destination requires source to conform
to certain protocol (or protocol composition);
- Incorrect returns where returned type doesn't conform to the
protocol specified in the signature.
This commit adds `ConstraintSystem::getCalleeLocator`, which forms a
locator that describes the callee of a given expression. This function
is then used to replace various places where this logic is duplicated.
This commit also changes the conditions under which a ConstructorMember
callee locator is formed. Previously it was formed for a CallExpr with a
TypeExpr function expr. However, now such a locator is formed if the
function expr is of AnyMetatypeType. This allows it to be more lenient
with invalid code, as well as work with DotSelfExpr.
Resolves SR-10694.
Extend use of `missing protocol conformance` fix to cover contextual
failures, such as:
- Assignment mismatches, where destination requires source to conform
to certain protocol (or protocol composition);
- Incorrect returns where returned type doesn't conform to the
protocol specified in the signature.
Detect and diagnose a contextual mismatch between expected
collection element type and the one provided (e.g. source
of the assignment or argument to a call) e.g.:
```swift
let _: [Int] = ["hello"]
func foo(_: [Int]) {}
foo(["hello"])
```
Instead of always requiring a call to be made to pass argument
to `@autoclosure` parameter, it should be allowed to pass argument
by value to `@autoclosure` parameter which can return a function
type.
```swift
func foo<T>(_ fn: @autoclosure () -> T) {}
func bar(_ fn: @autoclosure @escaping () -> Int) { foo(fn) }
```
Now covers following new areas (alongside simple assignments):
- Contextual type coercions:
- In assignment e.g. `let _: X = foo`
- In return type positions e.g. `func foo() -> A { return bar }`
- Argument-to-parameter applications (including @autoclosure)
Diagnose extraneous use of address of (`&`) which could only be
associated with arguments to `inout` parameters e.g.
```swift
struct S {}
var a: S = ...
var b: S = ...
a = &b
```
This updates the error message so that in the case where we can find a
Decl, it gives the error "cannot assign through subscript: 'name' is a
read-only key path", and in the case where there's no associated Decl, gives the
error message "cannot assign through subscript: key path is read-only".
Additionally updates tests with the new error messages and formats all changes.
KeyPath dynamic member lookup is limited to what key path itself
could do, so let's detect and diagnose invalid references just
like we do for regular key path expressions.
Resolves: rdar://problem/50376224
Detect difference in escapiness while matching function types
in the solver and record a fix that suggests to add @escaping
attribute where appropriate.
Also emit a tailored diagnostic when non-escaping parameter
type is used as a type of a generic parameter.
If the source of the assignment is a function type which has
a result that could be converted to expected destination type,
let's diagnose that as missing call if such function doesn't
have any parameters.
New diagnostic framework can already identify contextual failures
related to opaque return types, `RequirementFailure` just needs
to get adjusted to identify correct affected declaration and provide
tailored diagnostic.
Resolves: rdar://problem/49582531
Detect situations where key path doesn't have capability required
by the context e.g. read-only vs. writable, or either root or value
types are incorrect e.g.
```swift
struct S { let foo: Int }
let _: WritableKeyPath<S, Int> = \.foo
```
Here context requires a writable key path but `foo` property is
read-only.
Referencing (instance or static) methods in the key path is not
currently allowed, solver should be responsible for early detection
and diagnosis of both standalone e.g. `\.foo` and chained
e.g. `\.foo.bar` (where foo is a method) references in key path
components.
```swift
struct S {
func foo() -> Int { return 42 }
}
let _: KeyPath<S, Int> = \.foo
```
Resolves: rdar://problem/49413561