The generated header did not compile due to a bug that prevented us from
referencing the correct namespaces derived from the nominal type's name
(an extension does not have a name). Moreover, we did not generate
forward declarations for the members of the extensions for classes and
enums (but we did for structs). This change also removes a workaround
that emitted String::Index as _String_Index.
rdar://153221450
To trigger this error one needs to import a nested type from C++, use it
in a generic context in Swift, and export it back to C++. We were
inconsisent in what namespace did we declare the functions to get the
type metadata for types. It was in the swift namespace for foreign types
and in the module namespace for Swift types. This PR standardizes on how
the metadata function is declared and called to fix the issue.
Fixes#80538.
rdar://148597079
The test for nested constructs used library evolution forcing all types
to be opaque. As a result some code paths for non-opaque types were not
updated to support nested types. This patch updates the rest of the code
making sure we use fully qualified names (so they also work in the
context of the nested classes), and generate correct names for the C
compatibility structs that cannot contain "::".
Fixes#80291
rdar://147882976
PrintAsClang is supposed to emit declarations in the same order regardless of the compiler’s internal state, but we have repeatedly found that our current criteria are inadequate, resulting in non-functionality-affecting changes to generated header content. Add a diagnostic that’s emitted when this happens soliciting a bug report.
Since there *should* be no cases where the compiler fails to order declarations, this diagnostic is never actually emitted. Instead, we test this change by enabling `-verify` on nearly all PrintAsClang tests to make sure they are unaffected.
This did demonstrate a missing criterion that only mattered in C++ mode: extensions that varied only in their generic signature were not sorted stably. Add a sort criterion for this.
To support nested structs, we emit type aliases in the outer class.
Unfortunately, we emitted these type aliases unconditionally, even if
the actualy nested struct was not emitted to the reverse interop header
(due to visibility or the construct being unsupported). This PR fixed
this issue by checking first if the nested entity should be included in
the reverse interop header.
rdar://141688074
It is really involved to change how methods and classes are emitted into
the header so this patch introduces the impression of nested structs
through using statements and still emits the structs themselves as top
level structs. It emits them in their own namespace to avoid name
collisions. This patch also had to change some names to be fully
qualified to avoid some name lookup errors in case of nested structs.
Moreover, nesting level of 3 and above requires C++17 because it relies
on nested namespaces. Only nested structs are supported, not nested
classes.
Since this patch is already started to grow quite big, I decided to put
it out for reviews and plan to address some of the shortcomings in a
follow-up PR.
rdar://118793469