Introduce a new pass MandatoryTempRValueElimination, which works as the original TempRValueElimination, except that it does not remove any alloc_stack instruction which are associated with source variables.
Running this pass at Onone helps to reduce copies of large structs, e.g. InlineArrays or structs containing InlineArrays.
Copying large structs can be a performance problem, even at Onone.
rdar://151629149
Reimplement the simplification in swift and add a new transformation:
```
%1 = unchecked_addr_cast %0 : $*Builtin.FixedArray<N, Element> to $*Element
```
->
```
%1 = vector_base_addr %0 : $*Builtin.FixedArray<N, Element>
```
Beside cleaning up the source code, the motivation for the translation into Swift is to make it easier to improve the pass for some InlineArray specific optimizations (though I'm not sure, yet if we really need those).
Also, the new implementation doesn't contain the optimize-store-into-temp optimization anymore, because this is covered by redundant load elimination.
1. move embedded diagnostics out of the PerformanceDiagnostics pass. It was completely separated from the other logic in this pass, anyway.
2. rewrite it in swift
3. fix several bugs, that means: missed diagnostics, which led to IRGen crashes
* look at all methods in witness tables, including base protocols and associated conformances
* visit all functions in the call tree, including generic functions with class bound generic arguments
* handle all instructions, e.g. concurrency builtins
4. improve error messages by adding meaningful call-site information. For example:
* if the error is in a specialized function, report where the generic function is originally specialized with concrete types
* if the error is in a protocol witness method, report where the existential is created
Fixes a false alarm in case of recursive calls with different type parameters.
For example:
```
protocol P {
associatedtype E: P
}
func noRecursionMismatchingTypeArgs1<T: P>(_ t: T.Type) {
if T.self == Int.self {
return
}
noRecursionMismatchingTypeArgs1(T.E.self)
}
```
* Reimplement most of the logic in Swift as an Instruction simplification and remove the old code from SILCombine
* support more cases of existential archetype replacements:
For example:
```
%0 = alloc_stack $any P
%1 = init_existential_addr %0, $T
use %1
```
is transformed to
```
%0 = alloc_stack $T
use %0
```
Also, if the alloc_stack is already an opened existential and the concrete type is known,
replace it as well:
```
%0 = metatype $@thick T.Type
%1 = init_existential_metatype %0, $@thick any P.Type
%2 = open_existential_metatype %1 : $@thick any P.Type to $@thick (@opened("X", P) Self).Type
...
%3 = alloc_stack $@opened("X", any P) Self
use %3
```
is transformed to
```
...
%3 = alloc_stack $T
use %3
```
If an apply uses an existential archetype (`@opened("...")`) and the concrete type is known, replace the existential archetype with the concrete type
1. in the apply's substitution map
2. in the arguments, e.g. by inserting address casts
For example:
```
%5 = apply %1<@opend("...")>(%2) : <τ_0_0> (τ_0_0) -> ()
```
->
```
%4 = unchecked_addr_cast %2 to $*ConcreteType
%5 = apply %1<ConcreteType>(%4) : <τ_0_0> (τ_0_0) -> ()
```
Replace `unconditional_checked_cast` to an existential metatype with an `init_existential_metatype`, it the source is a conforming type.
Note that init_existential_metatype is better than unconditional_checked_cast because it does not need to do any runtime casting.
Which consists of
* removing redundant `address_to_pointer`-`pointer_to_address` pairs
* optimize `index_raw_pointer` of a manually computed stride to `index_addr`
* remove or increase the alignment based on a "assumeAlignment" builtin
This is a big code cleanup but also has some functional differences for the `address_to_pointer`-`pointer_to_address` pair removal:
* It's not done if the resulting SIL would result in a (detectable) use-after-dealloc_stack memory lifetime failure.
* It's not done if `copy_value`s must be inserted or borrow-scopes must be extended to comply with ownership rules (this was the task of the OwnershipRAUWHelper).
Inserting copies is bad anyway.
Extending borrow-scopes would only be required if the original lifetime of the pointer extends a borrow scope - which shouldn't happen in save code. Therefore this is a very rare case which is not worth handling.
`String(describing:)` does a bunch of dynamic casts
that can be pretty slow. Use interpolation instead,
which bypasses them.
For `swift-frontend`, this brings the time taken
for type-checking an empty file down from ~100ms
to ~70ms.
For `swift build`, this brings the time taken for
a null build down from ~600ms to ~450ms (the
larger delta is presumably due to the fact that
there's much more Swift code in `swift-package`).
Canonicalize a `fix_lifetime` from an address to a `load` + `fix_lifetime`:
```
%1 = alloc_stack $T
...
fix_lifetime %1
```
->
```
%1 = alloc_stack $T
...
%2 = load %1
fix_lifetime %2
```
This transformation is done for `alloc_stack` and `store_borrow` (which always has an `alloc_stack` operand).
The benefit of this transformation is that it enables other optimizations, like mem2reg.
This peephole optimization was already done in SILCombine, but it didn't handle store_borrow.
A good opportunity to make an instruction simplification out of it.
This is part of fixing regressions when enabling OSSA modules:
rdar://140229560
* Remove dead `load_borrow` instructions (replaces the old peephole optimization in SILCombine)
* If the `load_borrow` is followed by a `copy_value`, combine both into a `load [copy]`
It hoists `destroy_value` instructions without shrinking an object's lifetime.
This is done if it can be proved that another copy of a value (either in an SSA value or in memory) keeps the referenced object(s) alive until the original position of the `destroy_value`.
```
%1 = copy_value %0
...
last_use_of %0
// other instructions
destroy_value %0 // %1 is still alive here
```
->
```
%1 = copy_value %0
...
last_use_of %0
destroy_value %0
// other instructions
```
The benefit of this optimization is that it can enable copy-propagation by moving destroys above deinit barries and access scopes.
It removes a `copy_value` where the source is a guaranteed value, if possible:
```
%1 = copy_value %0 // %0 = a guaranteed value
// uses of %1
destroy_value %1 // borrow scope of %0 is still valid here
```
->
```
// uses of %0
```
This optimization is very similar to the LoadCopyToBorrow optimization.
Therefore I merged both optimizations into a single file and renamed it to "CopyToBorrowOptimization".
The optimization replaces a `load [copy]` with a `load_borrow` if possible.
```
%1 = load [copy] %0
// no writes to %0
destroy_value %1
```
->
```
%1 = load_borrow %0
// no writes to %0
end_borrow %1
```
The new implementation uses alias-analysis (instead of a simple def-use walk), which is much more powerful.
rdar://115315849
As the optimizer uses more and more AST stuff, it's now time to create an "AST" module.
Initially it defines following AST datastructures:
* declarations: `Decl` + derived classes
* `Conformance`
* `SubstitutionMap`
* `Type` and `CanonicalType`
Some of those were already defined in the SIL module and are now moved to the AST module.
This change also cleans up a few things:
* proper definition of `NominalTypeDecl`-related APIs in `SIL.Type`
* rename `ProtocolConformance` to `Conformance`
* use `AST.Type`/`AST.CanonicalType` instead of `BridgedASTType` in SIL and the Optimizer
The main changes are:
*) Rewrite everything in swift. So far, parts of memory-behavior analysis were already implemented in swift. Now everything is done in swift and lives in `AliasAnalysis.swift`. This is a big code simplification.
*) Support many more instructions in the memory-behavior analysis - especially OSSA instructions, like `begin_borrow`, `end_borrow`, `store_borrow`, `load_borrow`. The computation of end_borrow effects is now much more precise. Also, partial_apply is now handled more precisely.
*) Simplify and reduce type-based alias analysis (TBAA). The complexity of the old TBAA comes from old days where the language and SIL didn't have strict aliasing and exclusivity rules (e.g. for inout arguments). Now TBAA is only needed for code using unsafe pointers. The new TBAA handles this - and not more. Note that TBAA for classes is already done in `AccessBase.isDistinct`.
*) Handle aliasing in `begin_access [modify]` scopes. We already supported truly immutable scopes like `begin_access [read]` or `ref_element_addr [immutable]`. For `begin_access [modify]` we know that there are no other reads or writes to the access-address within the scope.
*) Don't cache memory-behavior results. It turned out that the hit-miss rate was pretty bad (~ 1:7). The overhead of the cache lookup took as long as recomputing the memory behavior.
Changes in this CR add part of the, Swift based, Autodiff specific
closure specialization optimization pass. The pass does not modify any
code nor does it even exist in any of the optimization pipelines. The
rationale for pushing this partially complete optimization pass upstream
is to keep up with the breaking changes in the underlying Swift based
compiler infrastructure.
Compute, update and handle borrowed-from instruction in various utilities and passes.
Also, used borrowed-from to simplify `gatherBorrowIntroducers` and `gatherEnclosingValues`.
Replace those utilities by `Value.getBorrowIntroducers` and `Value.getEnclosingValues`, which return a lazily computed Sequence of borrowed/enclosing values.
Add a new mandatory BooleanLiteralFolding pass which constant folds conditional branches with boolean literals as operands.
```
%1 = integer_literal -1
%2 = apply %bool_init(%1) // Bool.init(_builtinBooleanLiteral:)
%3 = struct_extract %2, #Bool._value
cond_br %3, bb1, bb2
```
->
```
...
br bb1
```
This pass is intended to run before DefiniteInitialization, where mandatory inlining and constant folding didn't run, yet (which would perform this kind of optimization).
This optimization is required to let DefiniteInitialization handle boolean literals correctly.
For example in infinite loops:
```
init() {
while true { // DI need to know that there is no loop exit from this while-statement
if some_condition {
member_field = init_value
break
}
}
}
```
By default it lowers the builtin to an `alloc_vector` with a paired `dealloc_stack`.
If the builtin appears in the initializer of a global variable and the vector elements are initialized,
a statically initialized global is created where the initializer is a `vector` instruction.
In regular swift this is a nice optimization. In embedded swift it's a requirement, because the compiler needs to be able to specialize generic deinits of non-copyable types.
The new de-virtualization utilities are called from two places:
* from the new DeinitDevirtualizer pass. It replaces the old MoveOnlyDeinitDevirtualization, which is very basic and does not fulfill the needs for embedded swift.
* from MandatoryPerformanceOptimizations for embedded swift
ASTGen always builds with the host Swift compiler, without requiring
bootstrapping, and is enabled in more places. Move the regex literal
parsing logic there so it is enabled in more host environments, and
makes use of CMake's Swift support. Enable all of the regex literal
tests when ASTGen is built, to ensure everything is working.
Remove the "AST" and "Parse" Swift modules from SwiftCompilerSources,
because they are no longer needed.