Computes the side effects for a function, which consists of argument- and global effects.
This is similar to the ComputeEscapeEffects pass, just for side-effects.
So far, function effects only included escape effects.
This change adds side-effects (but they are not computed, yet).
It also involves refactoring of the existing escape effects.
Also the SIL effect syntax changed a bit. Details are in docs/SIL.rst
* In `ApplySite`: `argumentOperands` and `isCalleeOperand`
* In `ArgumentConvention`: `isIndirect`, `isIndirectIn` and `isGuaranteed`
* In `Function`: `isDefinition`, `numParameterArguments`, `numArguments`, `getArgumentConvention`, `effectAttribute`
* In `Type`: `isFunction` and `isCalleeConsumedFunction`
* In `Instruction`: `hasUnspecifiedSideEffects`
* New bridged instructions: `EndApplyInst` and `AbortApplyInst`
* `LoadInst.ownership`
* `BeginAccessInst.isStatic`
* make the `Allocation` protocol a `SingleValueInstruction` (instead of `AnyObject`)
And simplify it.
This struct is not really needed by clients. It's just needed internally in 'Value.accessPath` (and similar properties) to compute the access path.
Dead-end blocks are blocks from which there is no path to the function exit (`return`, `throw` or unwind).
These are blocks which end with an unreachable instruction and blocks from which all paths end in "unreachable" blocks.
Let's lldb's `po` command not print any "internal" properties of the conforming type.
This is useful if the `description` already contains all the information of a type instance.
Replace the `struct EscapeInfo` with a simpler API, just consisting of methods of `ProjectedValue` and `Value`:
* `isEscaping()`
* `isAddressEscaping()`
* `visit()`
* `visitAddress()`
A projected value consists of the original value and a projection path.
For example, if the `value` is of type `struct S { var x: Int }` and `path` is `s0`, then the projected value represents field `x` of the original value.
Also, use ProjectedValue instead of AccessStoragePath.
If there are no more than 2 elements in the cache, we can avoid using the `cache` Dictionary, which avoids memory allocations.
Fortunately this is the common case by far (about 97% of all walker invocations).
For two reasons:
* We also like to check for assert failures in release builds. Although this could be achieved with `precondition`, it's easy to forget about it and use `assert` instead.
* We need to see the error message in crashlogs of release builds. This is even not the case for `precondition`.
Also, re-export the "Basic" module in "SIL" so that the new assert implementation is also available in the Optimizer module (where all files import SIL).
So far, argument effects were printed in square brackets before the function name, e.g.
```
sil [escapes !%0.**, !%1, %1.c*.v** => %0.v**] @foo : $@convention(thin) (@guaranteed T) -> @out S {
bb0(%0 : $*S, %1 : @guaranteed $T):
...
```
As we are adding more argument effects, this becomes unreadable.
To make it more readable, print the effects after the opening curly brace, and print a separate line for each argument. E.g.
```
sil [ossa] @foo : $@convention(thin) (@guaranteed T) -> @out S {
[%0: noescape **]
[%1: noescape, escape c*.v** => %0.v**]
bb0(%0 : $*S, %1 : @guaranteed $T):
...
```
It decides which functions need stack protection.
It sets the `needStackProtection` flags on all function which contain stack-allocated values for which an buffer overflow could occur.
Within safe swift code there shouldn't be any buffer overflows.
But if the address of a stack variable is converted to an unsafe pointer, it's not in the control of the compiler anymore.
This means, if there is any `address_to_pointer` instruction for an `alloc_stack`, such a function is marked for stack protection.
Another case is `index_addr` for non-tail allocated memory.
This pattern appears if pointer arithmetic is done with unsafe pointers in swift code.
If the origin of an unsafe pointer can only be tracked to a function argument, the pass tries to find the root stack allocation for such an argument by doing an inter-procedural analysis.
If this is not possible, the fallback is to move the argument into a temporary `alloc_stack` and do the unsafe pointer operations on the temporary.
rdar://93677524
It doesn't make sense to let getAccessPathWithScope return an `EnclosingScope` as the second tuple element, because in case it's a `base`, it duplicates the `AccessBase` (which is returned in the first tuple element).
Instead just return an optional `BeginAccessInst` which is not nil if such an "scope" is found.
This will allow using Swift headers that include Clang headers from SwiftCompilerSources.
For example, some headers in `swift/Basic` include headers from `clang/Basic`. Currently adding those Swift headers to the modulemap causes a build error.
Now that `AccessBase` is an enum, it makes sense to add an `unidentified` case. This avoids dealing with optional AccessBases in several place.
Clients don't need to make both, an optional check and a switch, but can check for unidentified access bases just in a single switch statement.
Refactor the logic so to have a single target to reference the
compatibility libraries for the host, and use that when needed.
The main driver for this change is supporting the cross-compilation of
x86-64 on Apple Silicon.
Supports rdar://90307965