This simplifies the code to emit availabilty diagnostics and ensures that they
display domain names consistently. While updating existing diagnostics, improve
consistency along other dimensions as well.
Delay resolution of availability domain identifiers parsed in availability
specifications until type-checking. This allows custom domain specifications to
be written in `if #available` queries.
When it's available, use an open-coded allocator function that returns
an alloca without popping if the allocator is nullptr and otherwise
calls swift_coro_alloc. When it's not available, use the malloc
allocator in the synchronous context.
The serialized diagnostic format has some extra fields that we can
adopt for diagnostic groups. Specifically:
* Category: store the diagnostic group name here
* Flags: extend the hack used by educational notes of placing Markdown file paths here
This allows external tools to locate the metadata pointer without needing to call the accessor function.
This is only useful for non-generic types, so we borrow the HasCanonicalMetadataPrespecializations flag to indicate the presence of this pointer on non-generic types, and it continues to indicate the presence of prespecializations for generic types.
Only emit this pointer for internal/private types with no runtime initialization. Public type metadata can be found with the symbol, and it's not useful for types that require runtime initialization.
At one point, OpenedArchetypeType did not exist as a separate subclass
of ArchetypeType, so this method did something. Now, it's just
equivalent to calling is<> or isa<>.
I also removed a couple of asserts that were obvious no-ops as a result.
This will unblock parsing and type-checking availability queries that specify
custom availability domains, e.g.:
```
if #available(CustomDomain) {
// Use declarations protected by @available(CustomDomain)
}
```
This patch adds support for emitting the flag
llvm::DINode::FlagAllCallsDescribed when generating LLVM IR from the
Swift compiler to get call-site information for swift source code.
With the acceptance of SE-0458, allow the use of unsafe expressions, the
@safe and @unsafe attributes, and the `unsafe` effect on the for..in loop
in all Swift code.
Introduce the `-strict-memory-safety` flag detailed in the proposal to
enable strict memory safety checking. This enables a new class of
feature, an optional feature (that is *not* upcoming or experimental),
and which can be detected via `hasFeature(StrictMemorySafety)`.
When a protocol conformance somehow depends on an isolated conformance, it
must itself be isolated to the same global actor as the conformance on
which it depends.
Implement lookup of availability domains for identifiers on
`AvailabilityDomainOrIdentifier`. Add a bit to that type which represents
whether or not lookup has already been attempted. This allows both
`AvailableAttr` and `AvailabilitySpec` to share a common implementation of
domain lookup.
Allow a conformance to be "isolated", meaning that it stays in the same
isolation domain as the conforming type. Only allow this for
global-actor-isolated types.
When a conformance is isolated, a nonisolated requirement can be
witnessed by a declaration with the same global actor isolation as the
enclosing type.
The previous algorithm failed to correctly handle the cases where some grouped
`@available` attributes could be marked invalid prior to type checking
attributes.
We had an exploded form of conformance attributes (@unchecked,
@preconcurrency, @unsafe) at several different places in the compiler.
Pull these into a single structure so it's easier to manage and extend.
Should have done this a long time ago.
This patch is follow-up work from #78942 and imports non-public members,
which were previously not being imported. Those members can be accessed
in a Swift file blessed by the SWIFT_PRIVATE_FILEID annotation.
As a consequence of this patch, we are also now importing inherited members
that are inaccessible from the derived classes, because they were declared
private, or because they were inherited via nested private inheritance. We
import them anyway but mark them unavailable, for better diagnostics and to
(somewhat) simplify the import logic for inheritance.
Because non-public base class members are now imported too, this patch
inflames an existing issue where a 'using' declaration on an inherited member
with a synthesized name (e.g., operators) produces duplicate members, leading
to miscompilation (resulting in a runtime crash). This was not previously noticed
because a 'using' declaration on a public inherited member is not usually
necessary, but is a common way to expose otherwise non-public members.
This patch puts in a workaround to prevent this from affecting the behavior
of MSVC's std::optional implementation, which uses this pattern of 'using'
a private inherited member. That will be fixed in a follow-up patch.
Follow-up work is also needed to correctly diagnose ambiguous overloads
in cases of multiple inheritance, and to account for virtual inheritance.
rdar://137764620
When `ExtensibleEnums` flag is set, it's going to be reflected in
the module file produced by the compiler to make sure that consumers
know that non-`@frozen` enumerations can gain new cases in the
future and switching cannot be exhaustive.
Most SDKs use only swiftinterfaces under usr/lib/swift. Let's make sure
we standardize this behavior and use only swiftinterface when they are
present, even if there are also binary swiftmodule files available.
Apply the same logic to SubFrameworks as well while we're at it.
rdar://145316821