The MemoryBuffer loader is used by LLDB during debugging to import binary Swift
modules from .swift_ast sections. Modules imported from .swift_ast sections are
never produced from textual interfaces. By disabling resilience the expression
evaluator in the debugger can directly access private members.
rdar://79462915
Rework Sendable checking to be completely based on "missing"
conformances, so that we can individually diagnose missing Sendable
conformances based on both the module in which the conformance check
happened as well as where the type was declared. The basic rules here
are to only diagnose if either the module where the non-Sendable type
was declared or the module where it was checked was compiled with a
mode that consistently diagnoses `Sendable`, either by virtue of
being Swift 6 or because `-warn-concurrency` was provided on the
command line. And have that diagnostic be an error in Swift 6 or
warning in Swift 5.x.
There is much tuning to be done here.
It's a known issue that we are using arm64e interfaces contents for the arm64 target,
meaning the encoded module flags are specifying -target arm64e-x-x instead of
-target arm64-x-x. Fortunately, we can tell the target arch from the interface file
name, so we could sanitize the target to use by inferring arch from the file name.
Foundation imports CoreFoundation with `@_implementationOnly`,
so CoreFoundation's modulemap won't be read, and the dependent libraries
of CoreFoundation will not be automatically linked when using static
linking.
For example, CoreFoundation depends on libicui18n and it's modulemap has
`link "icui18n"` statement. If Foundation imports CoreFoundation with
`@_implementationOnly` as a private dependency, the toolchain doesn't have
CoreFoundation's modulemap and Foundation's swiftmodule doesn't import
CoreFoundation. So the swiftc can't know that libicui18n is required.
This new option will add LINK_LIBRARY entry in swiftmodule to
specify dependent libraries (in the example case, Foundation's
swiftmodule should have LINK_LIBRARY entry of libicui18n)
See also: [Autolinking behavior of @_implementationOnly with static linking](https://forums.swift.org/t/autolinking-behavior-of-implementationonly-with-static-linking/44393)
This mechanism allows the compiler to use a backup interface file to build into a binary module when
a corresponding interface file from the SDK is failing for whatever reasons. This mechansim should be entirely opaque
to end users except several diagnostic messages communicating backup interfaces are used.
Part of rdar://77676064
For config condition `canImport(Foo, version: N)`, this patch teaches the compiler to check N
against the version of the Swift module Foo on disk. It returns true if the module version on
disk is greater or equal to N and returns false otherwise.
Part of rdar://73992299
canImport should be able to take an additional parameter labeled by either version or
underlyingVersion. We need underlyingVersion for clang modules with Swift overlays because they
have separate version numbers. The library users are usually interested in checking the importability
of the underlying clang module instead of its Swift overlay.
Part of rdar://73992299
If the `-static` option is specified, store that in the generated
swiftmodule file. When de-serializing, recover this information in the
representative SILModule.
This will be used for code generation on Windows. It is the missing
piece to allow static linking to function properly. It additionally
opens the path to additional optimization on ELF-ish targets - GOT, PLT
references can be avoided when the linked module is known to be static.
Co-authored by: Saleem Abdulrasool <compnerd@compnerd.org>
This allows library authors to pass down a project version number so that library users can conditionally
import that library based on the available version in the search paths.
Needed for rdar://73992299
The locations stored in .swiftsourceinfo included the presumed file,
line, and column. When a location is requested it would read these, open
the external file, create a line map, and find the offset corresponding
to that line/column.
The offset is known during serialization though, so output it as well to
avoid having to read the file and generate the line map.
Since the serialized location is returned from `Decl::getLoc()`, it
should not be the presumed location. Instead, also output the line
directives so that the presumed location can be built as per normal
locations.
Finally, move the cache out of `Decl` and into `ASTContext`, since very
few declarations will actually have their locations deserialized. Make
sure to actually write to that cache so it's used - the old cache was
never written to.
Cursor info for a constructor would previously give the cursor info for
the containing type only. It now also adds cursor info for the
constructor itself in a "secondary_symbols" field.
Refactor `passCursorInfoForDecl` to use a single allocator rather than
keeping track of positions in a buffer and assigning everything at the
end of the function.
Refactor the various available refactoring gathering functions to take a
SmallVectorImpl and to not copy strings where they don't need to.
Resolves rdar://75385556
Introduce a new compiler flag `-module-abi-name <name>` that uses the
given name as the ABI name for the module (rather than the module's
name in source code). The ABI name impacts name mangling and metadata.
In the legacy driver, these flags will merely be propagated to the
frontends to indicate that they should disable serialization of
incremental information in swift module files.
In the new driver, these flags control whether the Swift driver performs
an incremental build that is aware of metadata embedded in the module.
Kudos to David for coming up with our new marketing name: Incremental
Imports.
rdar://74363450
Otherwise, one runs into memory corruption. I ran into this while enabling ossa
on the stdlib for non-Darwin platforms.
Hopefully we do not regress on this again when someone adds more optzns that
eliminate these since I added a big NOTE to warn people to do it and implemented
support even for the entities we do not support deleting at the SIL
level... yet.
Adds a new frontend option
"-experimental-allow-module-with-compiler-errors". If any compilation
errors occur while generating the .swiftmodule, this mode will skip SIL
entirely and only serialize the (likey invalid) AST.
This existence of this option during generation is serialized into the
resulting .swiftmodule. Errors found in deserialization are only allowed
if it is set.
Primarily intended for IDE requests (eg. indexing and code completion)
to ensure robust cross-module results, despite possible errors.
Resolves rdar://69815975
This matches the behavior of the current client (`swift-driver`) and reduces ambiguity in how the nodes in the graph are to be treated. Swift dependencies with a textual interface, for example, must be built into a binary module by clients. Swift dependencies without a textual interface, with only a binary module, are to be used directly, without any up-to-date checks.
Note, this is distinct from Swift dependencies that have a textual interface, for which we also detect potential pre-build binary module candidates. Those are still reported in the `details` field of textual Swift dependencies as `prebuiltModuleCandidates`.
To help consolidate our various types describing imports, this commit moves the following types and methods to Import.h:
* ImplicitImports
* ImplicitStdlibKind
* ImplicitImportInfo
* ModuleDecl::ImportedModule
* ModuleDecl::OrderImportedModules (as ImportedModule::Order)
* ModuleDecl::removeDuplicateImports() (as ImportedModule::removeDuplicates())
* SourceFile::ImportFlags
* SourceFile::ImportOptions
* SourceFile::ImportedModuleDesc
This commit is large and intentionally kept mechanical—nothing interesting to see here.
This refactoring allows us to drop ModuleInterfaceLoader when explicit modules
are enabled. Before this change, the dependencies scanner needs the loader to be
present to access functionalities like collecting prebuilt module candidates.
This is meant to address a problem that arises on incremental package builds:
A re-scan on an already-built package instead of a placeholder dependency produces a graph that contains a dependency consisting solely of the previously-built swiftmodule.
This is not the behaviour we would like. Instead, we should respect that this is a placeholder dependency and ensure that the dependency graph for that dependency itself captures the fact that a previously-built module exists using compiledModuleCandidates field of the dependency graph.
In the fast dependency scanner, depending on whether a module intrface was found via the import search path or framework search path, encode into the dependency graph Swift module details, whether a given module is a framework.
In order to avoid accidentally implicitly loading modules that are expected but were not provided as explicit inputs.
- Use either SerializedModuleLoader or ExplicitSwiftModuleLoader for loading of partial modules, depending on whether we are in Explicit Module Build or Implicit Module Build mode.
-compile-module-from-interface action now takes arguments of -candidate-module-file.
If one of the candidate module files is up-to-date, the action emits a forwarding
module pointing to the candidate module instead of building a binary module.
Instead of replacing an interface file with its up-to-date compile module,
the dep-scanner should report potentially up-to-date module candidates either adjacent to
the interface file or in the prebuilt module cache. swift-driver should later pass down
these candidates to -compile-module-from-interface invocation and the front-end job
will check if one of the candidates is ready to use. The front-end job then either emits a forwarding
module to an up-to-date candidate or a binary module.
The difference with `ModuleFile` is that `ModuleFileSharedCore` provides immutable data and is independent of a particular ASTContext.
It is designed to be able to be shared across multiple `ModuleFile`s of different `ASTContext`s in a thread-safe manner.
Previously we were linking in all SIL entities
if the input was a serialized non-SIB AST, and
`-disable-sil-linking` wasn't specified. However
none of the tests appear to want this behaviour.
Stop calling `SerializedSILLoader::getAll`, and
remove the `-disable-sil-linking` option, as this
is now the default behaviour.
For the explicit module mode, swift-driver uses -compile-module-from-interface to
generate modules from interfaces found by the dependency scanner. However, we don't
need to build the binary module if up-to-date modules are available, either adjacent
to the interface file or in the prebuilt module cache directory. This patch teaches
dependencies scanner to report these ready-to-use binary modules.
```
class Generic<T> {
@objc dynamic func method() {}
}
extension Generic {
@_dynamicReplacement(for:method())
func replacement() {}
}
```
The standard mechanism of using Objective-C categories for dynamically
replacing @objc methods in generic classes does not work.
Instead we mark the native entry point as replaceable.
Because this affects all @objc methods in generic classes (whether there
is a replacement or not) by making the native entry point
`[dynamically_replaceable]` (regardless of optimization mode) we guard this by
the -enable-implicit-dynamic flag because we are late in the release cycle.
* Replace isNativeDynamic and isObjcDynamic by calls to shouldUse*Dispatch and
shouldUse*Replacement
This disambiguates between which dispatch method we should use at call
sites and how these methods should implement dynamic function
replacement.
* Don't emit the method entry for @_dynamicReplacement(for:) of generic class
methods
There is not way to call this entry point since we can't generate an
objective-c category for generic classes.
rdar://63679357
To support -disable-implicit-swift-modules, the explicitly built modules
are passed down as compiler arguments. We need this new module loader to
handle these modules.
This patch also stops ModuleInterfaceLoader from building module from interface
when -disable-implicit-swift-modules is set.