The feature InternalImportsByDefault makes imports default to internal instead
of public. Applying the Swift 6 behavior of SE-0409 in Swift 5.
Let's use only that flag to track the Swift 6 behavior as well instead
of separately checking for the language version.
something other than a declaration.
The validation code already diagnosed all sorts of invalid declarations, but
it was ignoring AST nodes that aren't declarations at all.
When comparing a requirement that uses typed throws and uses an
associated type for the thrown error type against a potential witness,
infer the associated type from the thrown error of the
witness---whether explicitly specified, untyped throws (`any Error`),
or non-throwing (`Never`).
`ForeignAsyncConvention.h` and `ForeignErrorConvention.h` must be included in `Decl.h`, because those types are used in an `llvm::Optional` in `Decl.h`.
properties to require actor isolation.
Member initializer expressions are only used in a constructor with
matching actor isolation. If the isolation prohibits the member
initializer from being evaluated synchronously (or propagating required
isolation through closure bodies), then the default value cannot be used
and the member must be explicitly initialized in the constructor.
Member initializer expressions are also used as default arguments for the
memberwise initializer, and the same rules for default argument isolation
apply.
Type checking a default argument expression will compute the required
actor isolation for evaluating that argument value synchronously. Actor
isolation checking is deferred to the caller; it is an error to use a
default argument from across isolation domains.
Currently gated behind -enable-experimental-feature IsolatedDefaultArguments.
Package decls are only printed in interface files if they are inlinable
(@usableFromInline, @inlinable, @_alwaysEmitIntoClient). They could be
referenced by a module outside of its defining module that belong to the same
package determined by the `package-name` flag. However, the flag is only in
.swiftmodule and .private.swiftinterface, thus type checking references of
inlinable package symbols in public interfaces fails due to the missing flag.
Instead of adding the package-name flag to the public interfaces, which
could raise a security concern, this PR grants access to such cases.
Resolves rdar://116142791
Lower the thrown error type into the SIL function type. This requires
very little code because the thrown error type was already modeled as
a SILResultInfo, which carries type information. Note that this
lowering does not yet account for error types that need to passed
indirectly, but we will need to do so for (e.g.) using resilient error
types.
Teach a few places in SIL generation not to assume that thrown types
are always the existential error type, which primarily comes down to
ensuring that rethrow epilogues have the thrown type of the
corresponding function or closure.
Teach throw emission to implicitly box concrete thrown errors in the
error existential when needed to satisfy the throw destination. This
is a temporary solution that helps translate typed throws into untyped
throws, but it should be replaced by a better modeling within the AST
of the points at which thrown errors are converted.
Add the thrown type into the AST representation of function types,
mapping from function type representations and declarations into the
appropriate thrown type. Add tests for serialization, printing, and
basic equivalence of function types that have thrown errors.
Parse typed throw specifiers as `throws(X)` in every place where there
are effects specified, and record the resulting thrown error type in
the AST except the type system. This includes:
* `FunctionTypeRepr`, for the parsed representation of types
* `AbstractFunctionDecl`, for various function-like declarations
* `ClosureExpr`, for closures
* `ArrowExpr`, for parsing of types within expression context
This also introduces some serialization logic for the thrown error
type of function-like declarations, along with an API to extract the
thrown interface type from one of those declarations, although right
now it will either be `Error` or empty.
Function bodies are skipped during typechecking when one of the
-experimental-skip-*-function-bodies flags is passed to the frontend. This was
implemented by setting the "body kind" of an `AbstractFunctionDecl` during decl
checking in `TypeCheckDeclPrimary`. This approach had a couple of issues:
- It is incompatible with skipping function bodies during lazy typechecking,
since the skipping is only evaluated during a phase of eager typechecking.
- It prevents skipped function bodies from being parsed on-demand ("skipped" is
a state that is distinct from "parsed", when they ought to be orthogonal).
This needlessly prevented complete module interfaces from being emitted with
-experimental-skip-all-function-bodies.
Storing the skipped status of a function separately from body kind and
requestifying the determination of whether to skip a function solves these
problems.
Resolves rdar://116020403
I think from SIL's perspective, it should only worry about whether the
type is move-only. That includes MoveOnlyWrapped SILTypes and regular
types that cannot be copied.
Most of the code querying `SILType::isPureMoveOnly` is in SILGen, where
it's very likely that the original AST type is sitting around already.
In such cases, I think it's fine to ask the AST type if it is
noncopyable. The clarity of only asking the ASTType if it's noncopyable
is beneficial, I think.
Show the same error for both decls and imports when using the package
access level and no package name is set. Also brings up this check to
run once on decls and avoid repeated diagnostics.
getClosureActorIsolation.
This is preparation for changing AbstractClosureExpr to store
ActorIsolation instead of ClosureActorIsolation, and convert to
ClosureActorIsolation when needed to allow incrementally updating
callers. This change is NFC.
Apply import restriction in central access scope services allows us to
simplify the access-level on import enforcement as it's better
integrated with the existing logic.
Plus tweak `DefaultDefinitionTypeRequest` caching to support querying the
cached type when dumping. This fixes a crash where type computation is
triggered in the dumper before import resolution in `-dump-parse` mode.
Previously, fully qualified types would be missing for global vars and
properties in `.swiftinterface` files that were emitted lazily.
Adding the test case also revealed that PatternBindingDecls needed to be
typechecked before lazy module serialization as well.
Provide member macros with similar information about conformances to
what extension macros receive, allowing member macros to document
which conformances they care about (e.g., Decodable) and then
receiving the list of conformances that aren't already available for
the type in question. For example, a macro such as
@attached(member, conformances: Decodable, Encodable, names:
named(init(from:), encode(to:)))
macro Codable() = ...
Expanded on a type that is not already Decodable/Encodable would be
provided with Decodable and Encodable (via the new
`missingConformancesTo:` argument to the macro implementation) when
the type itself does not conform to those types.
Member macros still cannot produce conformances, so this is likely to
be used in conjunction with extension macros most of the time. The
extension macro declares the conformance, and can also declare any
members that shouldn't be part of the primary type definition---such
as initializers that shouldn't suppress the memberwise initializer. On
the other hand, the member macro will need to define any members that
must be in the primary definition, such as required initializers,
members that must be overridable by subclasses, and stored properties.
Codable synthesis is an example that benefits from member macros with
conformances, because for classes it wants to introduce a required
initializer for decoding and an overridable encode operation, and
these must be members of the nominal type itself. Specifically, the
`Codable` macro above is likely to have two attached member roles:
@attached(member, conformances: Decodable, Encodable, names:
named(init(from:), encode(to:)))
@attached(extension, conformances: Decodable, Encodable, names:
named(init(from:), encode(to:)))
macro Codable() = ...
where the "extension" role is responsible for defining the conformance
(always), and the "member" creates the appropriate members for classes
(`init` vs. `required init`).
Tracked by rdar://112532829.
Replace the `front()` and `back()` accessors on `InheritedTypes` with dedicated
functions for accessing the start and end source locations of the inheritance
clause. NFC.
Wrap the `InheritedEntry` array available on both `ExtensionDecl` and
`TypeDecl` in a new `InheritedTypes` class. This class will provide shared
conveniences for working with inherited type clauses. NFC.