Allows us to properly infer the type (Int, Int)[] from the array
literal [(1, 2)]. This is the last piece of functionality in
<rdar://problem/11293232>.
Swift SVN r9408
wide
Currently integer literals are 64-bit. In order to allow checking for overflow
while converting an integer literal to swift.UInt/Int* types we need at least
65 bits. But floating point numbers (Float32, Float64, Float80) are
BuiltinIntegerLiteralConvertible. In order to allow spelling large floating
point constants, we allow 136-bit literals.
Rationale: 128 bits are enough to represent the absolute value of min/max IEEE
Binary32, and we need 1 bit to represent the sign. 136 is 129 rounded to the
next 8 bits.
The plan is to have builtins that do the overflow check and convert 136-bit
numbers to the required width. We need these builtins for both integers and
floating point numbers to ensure that 136-bit numbers are folded into sane
constants in SIL and don’t escape to LLVM IR.
Swift SVN r9253
Require that either T be default constructible or that the user provide a closure that maps indices to initial values. We don't actually call the closure yet to initialize the array; that's blocked on function abstraction difference <rdar://problem/13251236>.
Swift SVN r8801
Introduce a bit in Expr to indicate whether the expression is implicit and decouple the implicitness
of an expression from whether it has a source location or not.
This allows implicit expressions to be able to point at the source location where they originated from.
It also allows decoupling the implicitness of a parent from its children, so for example, an implicit CallExpr
can have an explicit parameter value.
Swift SVN r8600
Iff an enum declares a raw type, its cases may declare raw values or else have them assigned to them implicitly by autoincrementing from zero, like in C. If the raw type is float-, string-, or char-literal-convertible, there is no autoincrement, and the raw values must all be explicit. The raw type is rejected if any cases have payloads.
We don't yet diagnose duplicate raw values. That'll come next. We also don't yet serialize or deserialize the raw values. We don't strictly need to do this, since the RawRepresentable protocol conformance will be exported from the module as API, but Jordan pointed out that, for fragile raw values, this would be good for documents/jump-to-definition purposes, so we have a plan for only serializing the literals without having to deal with fully general expression serialization.
Swift SVN r8545
When a class definition contains no constructors, and all of the
instance variables are either default initializable or have initial
values in the class, and the superclass (if any) has a constructor
callable with the argument (), implicitly define a default
constructor.
Fixes <rdar://problem/14828518>.
Swift SVN r8487
AnyFunctionRef is a universal function reference that can wrap all AST nodes
that represent functions and exposes a common interface to them. Use it in two
places in SIL where CapturingExpr was used previously.
AnyFunctionRef allows further simplifications in other places, but these will
be done separately.
Swift SVN r8239
global variables used by functions in the capture list as well.
SILGen and other things that don't care about these (i.e., all
current current clients) filter the list to get what they want.
This is needed for future definite init improvements, and unblocked
by Doug's patch in r8039 (thanks! :)
No functionality change.
Swift SVN r8045
MemberRefExpr now uses ConcreteDeclRef to refer to its member, which
includes the substitutions and obviates the need for
GenericMemberRefExpr.
Swift SVN r7842
This was not likely an error-free change. Where you see problems
please correct them. This went through a fairly tedious audit
before committing, but comments might have been changed incorrectly,
not changed at all, etc.
Swift SVN r7631
-Introduce PersistentParserState to represent state persistent among multiple parsing passes.
The advantage is that PersistentParserState is independent of a particular Parser or Lexer object.
-Use PersistentParserState to keep information about delayed function body parsing and eliminate parser-specific
state from the AST (ParserTokenRange).
-Introduce DelayedParsingCallbacks to abstract out of the parser the logic about which functions should be delayed
or skipped.
Many thanks to Dmitri for his valuable feedback!
Swift SVN r6580
There is a bunch of copy-and-paste here from the tuple-shuffle
code. The expected trajectory is that ScalarToTupleExpr will grow into
a general TupleConversionExpr, obviating the need for TupleShuffleExpr
entirely and eliminating the redundancy.
Swift SVN r6347
Because of '~=' lookahead and precedence parsing, we need to be able to parse pattern productions in expression position and validate them after name binding. Add an unresolved Expr node that can hold a subpattern for this purpose.
Swift SVN r5825
Sub-patterns are now considered part of the enclosing pattern, so if the
parent pattern pointer is const, the child pointer will be too.
I changed the minimal number of files to make this work, but future code
should use "const Pattern *" when intended, and "Pattern *" only if they
intend to modify the pattern.
Swift SVN r5743
Improve our representations of casts in the AST and SIL so that 'as!' and 'is' (and eventually 'as?') can share almost all of the same type-checking, SILGen, and IRGen code.
In the AST, we now represent 'as!' and 'is' as UnconditionalCheckedCastExpr and IsaExpr, respectively, with the semantic variations of cast (downcast, super-to-archetype, archetype-to-concrete, etc.) discriminated by an enum field. This keeps the user-visible syntactic and type behavior differences of the two forms cleanly separated for AST consumers.
At the SIL level, we transpose the representation so that the different cast semantics get their own instructions and the conditional/unconditional cast behavior is indicated by an enum, making it easy for IRGen to discriminate the different code paths for the different semantics. We also add an 'IsNonnull' instruction to cover the conditional-cast-result-to-boolean conversion common to all the forms of 'is'.
The upshot of all this is that 'x is T' now works for all the new archetype and existential cast forms supported by 'as!'.
Swift SVN r5737
Open us 'a as! T' to allow dynamic casts from archetypes to archetypes, archetypes to concrete types, existentials to archetypes, and existentials to concrete types. When the type-checker finds these cases, generate new Unchecked*To*Expr node types for each case.
We don't yet check whether the target type actually makes sense with the constraints of the archetype or existential, nor do we implement the SILGen/IRGen backends for these operations. We also don't extend 'x is T' to query the new operation kinds. There's a better factoring that would allow 'as!' and 'is' to share more code. For now, I want to make sure 'x as! T' continues to work for ObjC APIs when we flip the switch to import protocol types.
Swift SVN r5611
We can save some source code noise and ASTContext allocation traffic by representing unsequenced assignments and ternaries using AssignExpr/IfExpr with the left and right subnodes nulled out, filling them in during sequence folding.
Swift SVN r5509
Parse '=' as a binary operator with fixed precedence, parsing it into a temporary UnsequencedAssignExpr that gets matched to operands and turned into an AssignExpr during sequence expr folding. This makes '=' behave like library-defined assignment-like binary operators.
This temporarily puts '=' at the wrong precedence relative to 'as' and 'is', until 'as' and 'is' can be integrated into sequence parsing as well.
Swift SVN r5508
Change AssignStmt into AssignExpr; this will make assignment behave more consistently with assignment-like operators, and is a first step toward integrating '=' parsing with SequenceExpr resolution so that '=' can obey precedence rules. This also nicely simplifies the AST representation of c-style ForStmts; the initializer and increment need only be Expr* instead of awkward Expr*/AssignStmt* unions.
This doesn't actually change any user-visible behavior yet; AssignExpr is still only parsed at statement scope, and typeCheckAssignment is still segregrated from the constraint checker at large. (In particular, a PipeClosureExpr containing a single assign expr in its body still doesn't use the assign expr to resolve its own type.) The parsing issue will be addressed by handling '=' during SequenceExpr resolution. typeCheckAssignment can hopefully be reworked to work within the constraint checker too.
Swift SVN r5500
Instead of trying to parse '?' and ':' as separate placeholder exprs and matching them up during binary expr resolution, it's a bit cleaner to parse the entire '? ... :' middle expr of the ternary into a single placeholder node at parse time. Then binary expr resolution only ever has to consider a single sequence element.
Swift SVN r5499
Explicit detect (and reject) conversions that aren't class
downcasts. We'll want to lift some of these restrictions later (see
<rdar://problem/14013456>), but for now we just reject them with a
decent diagnostic (rather than crashing).
When an explicit downcast is actually just a coercion, complain,
provide a Fix-It, and update the AST appropriately.
This also splits the checking of unchecked downcasts into two different
constraint systems: one for the context of expression, and one for the
subexpression, then compares the results. This eliminates the need to
model "can be downcast to" in the constraint solver, and makes it
easier to provide good diagnostics.
Swift SVN r5377
Trailing closure syntax allows one to write a closure following any
other postfix expression, which passes the closure to that postfix
expression as an arguments. For example:
sort(fruits) { |lhs, rhs|
print("Comparing \(lhs) to \(rhs)\n")
return lhs > rhs
}
As a temporary limitation to work around the ambiguity with
if foo { ... } { ... }
we require trailing closures to have an explicit parameter list, e.g.,
if foo { || ... } { ... }
Swift SVN r5210
Because we synthesize AST nodes fairly often, and those synthesized
AST nodes rarely have useful source-location information, we shouldn't
be using the validity of source locations to describe the AST. In the
case of closures, use a bit instead. No functionality change.
Swift SVN r5205
This commit implements closure syntax that places the (optional)
parameter list in pipes within the curly braces of a closure. This
syntax "slides" well from very simple closures with anonymous
arguments, e.g.,
sort(array, {$1 > $0})
to naming the arguments
sort(array, {|x, y| x > y})
to adding a return type and/or parameter types
sort(array, {|x : String, y : String| -> Bool x > y})
and with multiple statements in the body:
sort(array, {|x, y|
print("Comparing \(x) and \(y)\n")
return x > y
})
When the body contains only a single expression, that expression
participates in type inference with its enclosing expression, which
allows one to type-check, e.g.,
map(strings, {|x| x.toUpper()})
without context. If one has multiple statements, however, one will
need to provide additional type information either with context
strings = map(strings, {
return $0.toUpper()
})
or via annotations
map(strings, {|x| -> String
return x.toUpper()
}
because we don't perform inter-statement type inference.
The new closure expressions are only available with the new type
checker, where they completely displace the existing { $0 + $1 }
anonymous closures. 'func' expressions remain unchanged.
The tiny test changes (in SIL output and the constraint-checker test)
are due to the PipeClosureExpr AST storing anonymous closure arguments
($0, $1, etc.) within a pattern in the AST. It's far cleaner to
implement this way.
The testing here is still fairly light. In particular, we need better
testing of parser recovery, name lookup for closures with local types,
more deduction scenarios, and multi-statement closures (which don't
get exercised beyond the unit tests).
Swift SVN r5169
We will handle Swift-function-to-ObjC-block bridging in SILGen as part of general Cocoa-to-Swift type bridging. Temporarily disable building swiftAppKit and tests that exercise block bridging until the new implementation lands.
Swift SVN r5090