This is a step towards making the framework easier to use in Swift; in the
actual headers, these are typed as "CFTypeRef" or "const CFTypeRef", which
is not considered Hashable (and thus cannot be put in a dictionary).
Unfortunately, CFStringRef is also not hashable, so we're not there yet,
but at least this allows a freer conversion to NSString.
Part of <rdar://problem/17162475>
Swift SVN r20931
This completes <rdar://problem/17024498>, except that we don't yet do
anything with 'deprecated' or 'obsoleted'. The former is covered by
<rdar://problem/17406050>, and I filed <rdar://problem/17873422> for the
latter.
Swift SVN r20845
Nearly all of them come from some annotation written explicitly in the
Objective-C header, and all of them should be shown in the generated
interface for an imported module.
Part of <rdar://problem/17024498>
Swift SVN r20841
Previously, we only retained the module in which a normal protocol
conformance occurred, which meant we either had to go searching for
the appropriate extension (yuck) or do without that information. This
is part of the separating-extension-archetypes work.
Swift SVN r20793
The eventual goal for extensions of generic types is to require them
to specify their generic parameters, e.g.,
extension Array<T> { ... }
rather than today's
extension Array { ... }
Start parsing (optional) generic parameters here, and update the
representation of ExtensionDecl to accomodate this new grammar
production. Aside from the parser changes, there's no intended
functionality change here.
Swift SVN r20682
This adds generic parameters and generic signatures to extension
declarations. The actual generic parameters just mirror what is
available on the extended type; however, it is filled in via extension
validation, which is handled lazily.
This is a NFC step toward decoupling the archetypes of extensions from
the archetypes of the extended types <rdar://problem/16974298>.
Swift SVN r20675
...rather than distinct classes. This is a bit more complicated than just
making a second typealias because we still want to strip off the "Ref".
<rdar://problem/17686069>
Swift SVN r20652
Previously, we were just storing setter accessibility via the accessibility
level on the setter function. However, some Stored properties never actually
have a setter synthesized, which led to the compiler dropping the setter
accessibility at serialization time. Rather than try to hack up something
clever, just store the setter accessibility explicitly in every
AbstractStorageDecl. (We still only serialize it for VarDecls, because
settable SubscriptDecls always have setter functions.)
<rdar://problem/17816530>
Swift SVN r20598
This replaces my egregious -initWithCoder:-specific hack with a more
reasonable general solution.
Replace my initWithCoder: hack with a proper
Swift SVN r20562
to emit fixit's when we rename something, e.g.:
t.swift:6:9: error: 'float' has been renamed to Float
var y : float
^~~~~
Float
Adopt this in the stdlib.
Swift SVN r20549
This allows us to express required initializers in the API notes. Use
it to smooth over NSString differences in the various SDKs even more.
Swift SVN r20511
...and 'assign' and 'unsafe_unretained' as 'unowned(unsafe)', if the
property is a class type.
This isn't important for the compiler, but it is documentation for users
when they look at the generated interface for an Objective-C module.
Note that this actually produces a decl users can't yet write:
unowned(unsafe) var foo: UIView!
That's <rdar://problem/17277899> unowned pointers can't be optional.
<rdar://problem/17245555>
Swift SVN r20433
Initializers for non-final classes will soon need to be 'required' to
conform to an initializer requirement in a protocol, so start
marking imported initializers from Objective-C protocols as
'required'. This is part of <rdar://problem/17408284> and
<rdar://problem/17415607>.
Swift SVN r20428
If an enum has a name but isn't declared with NS_ENUM or NS_OPTIONS, we
don't know how it's intended to be used, so we import it as a struct with
each enumerator as a value. The raw value of the enum used to be accessible
as the 'value' field, but that was mistakenly marked Private in the Great
Access Control Update.
We could consider making plain enums RawRepresentable (and just convert
to and from their raw type without checking anything), but that's something
to do later.
<rdar://problem/17753237>
Swift SVN r20355
To do this, we keep track of decls with superfluous typedefs (rather than
just the typedefs), and check for that. Tag decls without typedefs are
printed with the tag.
<rdar://problem/17569385>
Swift SVN r20221
it indirectly through another pointer from Decl, just embed DeclAttributes
directly into Decl and get rid of the "getMutableAttrs" nonsense.
Swift SVN r20216
Mechanically add "Type" to the end of any protocol names that don't end
in "Type," "ible," or "able." Also, drop "Type" from the end of any
associated type names, except for those of the *LiteralConvertible
protocols.
There are obvious improvements to make in some of these names, which can
be handled with separate commits.
Fixes <rdar://problem/17165920> Protocols `Integer` etc should get
uglier names.
Swift SVN r19883
SIL SROA needs to know when a struct's visible fields actually completely make up the struct value, which becomes an issue if we start importing structs with yet-unrepresentable unions and bitfields. Track this in the ClangImporter, and add an 'aggregateHasUnreferenceableStorage' predicate to SILType to make it easy for passes to query. Part of <rdar://problem/17555966>.
Swift SVN r19720
CGFloat is 32-bit on 32-bit architectures and 64-bit on 64-bit
architectures for historical reasons. Rather than having it alias
either Float (32-bit) or Double (64-bit), introduce a distinct struct
type for CGFloat. CGFloat provides a complete set of comparisons and
arithmetic operators (including tgmath functions), initializers allows
explicit conversion between it an Int, UInt, Float, and Double, as
well as conforming to all of the protocols that Float/Double do.
This formulation of CGFloat makes use of CGFloat
architecture-independent, although it still requires a number of casts.
Fixes <rdar://problem/17224725>
Swift SVN r19689
- Change the parser to accept "objc" without an @ sign as a contextual
keyword, including the dance to handle the general parenthesized case.
- Update all comments to refer to "objc" instead of "@objc".
- Update all diagnostics accordingly.
- Update all tests that fail due to the diagnostics change.
- Switch the stdlib to use the new syntax.
This does not switch all tests to use the new syntax, nor does it warn about
the old syntax yet. That will be forthcoming. Also, this needs a bit of
refactoring, which will be coming up.
Swift SVN r19555
Ban use of CFRetain, CFRelease, CFAutorelease used for manual memory management as well as a bunch of other similar APIs, such as CGColorRelease.
Addresses radar://16892185
Swift SVN r19552
We still don't import the fields of unions or bitfields, but we want to at least be able to represent the types so that APIs using the types can be used from Swift. IRGen should be able to produce the correct layout for these types even if all of their fields don't get reflected into Swift.
Swift SVN r19529
This is a WIP. This patch includes:
- Adds version tuple information for 'introduced', 'deprecated',
and 'obsoleted' to the 'availability' attribute.
- Add Clang importer support to import __attribute__((availability))
version tuples into Swift as pieces of the 'availability'
attribute.
- Add serialization support for the 'availability' attribute with
this extra information. This is not tested other than the
tests currently passing. This is not expected to be
really exercised (with interesting versions) until
parsing support is added for the version tuples. However,
existing @availability attributes in the test suite are being
serialized, which should just include "empty" version information.
What's not in this patch:
- Parsing support in Swift for 'deprecated', 'introduced', or
'obsoleted'. All of this information is currently being pulled
in from the Clang Importer.
- Warning support for using deprecated declarations based on the
availability information and the minimum deployment target.
- Some harmony reconciling the 'IsUnavailable' field in
AvailabilityAttr, which attempts to eagerly compute if something
is unavailable so we don't have to replicate the checking logic
elsewhere. The idea is that when we either import availability
information or lazily deserialize it we can compute whether or
not something is conditionally unavailable or deprecated right
there, and not have to have all clients within the frontend
of the availability information need to pass the minimum
deployment target. Right now 'IsUnavailable' is also used
to encode if the attribute represents unconditional unavailability,
e.g. @availability(*, unavailable).
This patch, however, should contain enough information to start
looking at implementing weak linking support.
NOTE: the serialization of the attribute is a bit ugly. I wasn't
certain if Jordan's serialization meta-programming supported
serializing values that decomposed into multiple values in a record,
so this ugly macro-based implementation is in place which compacts
all the version tuple information for an availability attribute
into a single record.
Swift SVN r19487
- Category names weren't unique.
- We were using an attribute to detect if something was a Swift category,
but attributes can't be used on categories.
- The test that this was all working was failing in a way that wasn't caught.
To solve these problems:
- We're using a macro to generate category names based on __LINE__ in addition
to the current module.
- The importer uses the macro to detect that the category comes from Swift
(no attribute needed).
- The test now has a deliberate error for -verify to catch.
<rdar://problem/17342287&17538553>
Swift SVN r19479
No validation is done yet on whether the user-specified access control makes
sense in context, but all ValueDecls should at least /have/ accessibility now.
/Still/ no tests yet. They will be much easier to write once we're actually
enforcing access control and/or printing access control.
Swift SVN r19143
Because extensions don't have any identity we can check against, we can't
tell when we see an Objective-C category if it came from a Swift extension.
Change PrintAsObjC to mark all such categories with SWIFT_EXTENSION, and
just skip them unilaterally when importing Objective-C code.
Also, actually give Swift extensions a name when writing them as Objective-C
categories. Previously, they were nameless categories ("class extensions"),
but methods in a class extension are supposed to be implemented in the class's
main @implementation, so people were getting unexpected warnings about missing
implementations.
<rdar://problem/17342287>
Swift SVN r19116
These changes prevent a certain class of bogus errors, as well as several crashers. Unfortunately, though, they don't quite get us to the point where we can broadly use recursively defined protocol requirements, in the standard library. (To do so would require significant changes across the entire stack.)
Swift SVN r19019
This is all goodness, and eliminates a major source of implicit conversions.
One thing this regresses on though, is that we now reject "x == nil" where
x is an option type and the element of the optional is not Equtatable. If
this is important, there are ways to enable this, but directly testing it as
a logic value is more straight-forward.
This does not include support for pattern matching against nil, that will be
a follow on patch.
Swift SVN r18918