While this will be in the compiler arguments, it's easy to miss when
skimming over the pretty stacktrace. Add an explicit message to make it
easier to see while looking over crashes.
llvm-project `ErrorHandling.h` was updated to remove std::string. This
added a new `report_fatal_error` overload taking a `const Twine &`,
removed the overload that took `const std::string &`, and updated
`fatal_error_handler_t` to use `const char *` rather than `const
std::string &`.
Fix uses of these functions to take into account these updates. Note
that without the `const std::string &` overload, passing a `std::string`
into `report_fatal_error` now results in an ambiguous match between the
`StringRef` and `Twine` overloads so we need to be explicit about one or
the other.
Leaks checking is not thread safe and e.g. lldb creates multiple SILModules in multiple threads, which would result in false alarms.
Ideally we would make it thread safe, e.g. by putting the instruction counters in the SILModule, but this would be a big effort and it's not worth doing it. Leaks checking in the frontend's and SILOpt's SILModule (not including SILModules created for module interface building) is a good enough test.
rdar://84688015
Ensure that we only have one writer to the module trace file at a time by using LLVM's `LockFileManager` utilities, similarly to `ModuleInterfaceBuilder`
Resolves rdar://76743462
This additional supplement output should capture semantic info the compiler has
captured while building a Swift module. Similar to the source info file, the content of
the semantic info file should only be consumed by local tooling written in Swift.
The Swift driver is passing the optimization record file path via the supplementals output, instead of the flag, on certain circumstances.
Enhance the frontend to check supplemental outputs otherwise the record file will not get emitted when using the new swift driver.
Make sure that we add the appropriate rpaths so that the appropriate
_Concurrency back-deployment library can be picked up.
We don't need to update the Swift driver since it uses the C++ driver
as the source of truth to determine if the relevant rpath should be
added or not.
We have implemented a libSwiftDriver-based tool to generate prebuilt module cache for
entire SDKs. Anchored on the same infrastructure, we could also generate ABI baselines
for entire SDKs.
Enable emitting the module-level incremental fine-grained compilation
information from the emit-module job for incremental compilation to
work with emit-module-separately.
This change causes the cache to be layered with a local "cache" that wraps the global cache, which will serve as the source of truth. The local cache persists only for the duration of a given scanning action, and has a store of references to dependencies resolved as a part of the current scanning action only, while the global cache is the one that persists across scanning actions (e.g. in `DependencyScanningTool`) and stores actual module dependency info values.
Only the local cache can answer dependency lookup queries, checking current scanning action results first, before falling back to querying the global cache, with queries disambiguated by the current scannning action's search paths, ensuring we never resolve a dependency lookup query with a module info that could not be found in the current action's search paths.
This change is required because search-path disambiguation can lead to false-negatives: for example, the Clang dependency scanner may find modules relative to the compiler's path that are not on the compiler's direct search paths. While such false-negative query responses should be functionally safe, we rely on the current scanning action's results being always-present-in-the-cache for the scanner's functionality. This layering ensures that the cache use-sites remain unchanged and that we get both: preserved global state which can be queried disambiguated with the search path details, and an always-consistent local (current action) cache state.
Outputting the effective version in the pretty stack trace was skipped
if the current version was the same as the effective version. This would
result in an empty line, which is somewhat confusing. Output a line
regardless.
Resolves rdar://81140703
Rather than outputting diagnostics and to stderr, output all the extra
information added when deserialization fatally fails to the pretty stack
trace instead. Since the pretty stack trace is added to crash logs, this
should avoid the dance of requesting the compiler output
- Moves the previous "**** DESERIALIZATION FAILURE ..." output to the
last pretty stack trace line
- Removes the module and compiler version notes added to the fatal
diagnostic
- Adds a new effective compiler version line for all frontend failure.
Somewhat duplicates the line from the driver, but adds in the
effective version
- Adds a new line for the full misc version of the module that failed.
May double up with previous "While reading from ..." lines that are
added in various deserialization methods, but better to have it
twice than not at all
It's currently not obvious in crash reports whether compiling with
errors is enabled or not. Since this option can make previously
"impossible" paths now possible, add a message to both the pretty stack
output and fatal deserialization diagnostics to point out that it is
enabled.
Gather 'round to hear tell of the saga of autolinking in incremental
mode.
In the beginning, there was Swift code, and there was Objective-C code.
To make one import bind two languages, a twinned Swift module named the same as an
Objective-C module could be imported as an overlay. But all was not
well, for an overlay could be created which had no Swift content, yet
required Swift symbols. And there was much wailing and gnashing of teeth
as loaders everywhere disregarded loading these content-less Swift
libraries.
So, a solution was found - a magical symbol _swift_FORCE_LOAD_$_<MODULE>
that forced the loaders to heed the dependency on a Swift library
regardless of its content. It was a constant with common linkage, and it
was good. But, along came COFF which needed to support autolinking but
had no support for such matters. It did, however, have support for
COMDAT sections into which we placed the symbol. Immediately, a darkness
fell across the land as the windows linker loudly proclaimed it had
discovered a contradiction: "_swift_FORCE_LOAD_$_<MODULE> cannot be
a constant!", it said, gratingly, "for this value requires rebasing."
Undeterred, we switched to a function instead, and the windows linker
happily added a level of indirection to its symbol resolution procedure
and all was right with the world.
But this definition was not all right. In order to support multiple
translation units emitting it, and to prevent the linker from dead
stripping it, Weak ODR linkage was used. Weak ODR linkage has the nasty
side effect of pessimizing load times since the dynamic linker must
assume that loading a later library could produce a more definitive
definition for the symbol.
A compromise was drawn up: To keep load times low, external linkage was
used. To keep the linker from complaining about multiple strong
definitions for the same symbol, the first translation unit in the
module was nominated to recieve the magic symbol. But one final problem
remained:
Incremental builds allow for files to be added or removed during the
build procedure. The placement of the symbol was therefore dependent
entirely upon the order of files passed at the command line. This was no
good, so a decree was set forth that using -autolink-force-load and
-incremental together was a criminal offense.
So we must compromise once more: Return to a symbol with common linkage,
but only on Mach-O targets. Preserve the existing COMDAT-friendly
approach everywhere else.
This concludes our tale.
rdar://77803299
When allowing errors with
-experimental-allow-module-with-compiler-errors, do not output the
.swiftinterface when there has been errors. There's no real need to
output them for invalid modules, so this avoids module interface
printing having to have checks for normally-impossible cases.
Resolves rdar://78039608.