Raw identifiers are backtick-delimited identifiers that can contain any
non-identifier character other than the backtick itself, CR, LF, or other
non-printable ASCII code units, and which are also not composed entirely
of operator characters.
This is phase-1 of switching from llvm::Optional to std::optional in the
next rebranch. llvm::Optional was removed from upstream LLVM, so we need
to migrate off rather soon. On Darwin, std::optional, and llvm::Optional
have the same layout, so we don't need to be as concerned about ABI
beyond the name mangling. `llvm::Optional` is only returned from one
function in
```
getStandardTypeSubst(StringRef TypeName,
bool allowConcurrencyManglings);
```
It's the return value, so it should not impact the mangling of the
function, and the layout is the same as `std::optional`, so it should be
mostly okay. This function doesn't appear to have users, and the ABI was
already broken 2 years ago for concurrency and no one seemed to notice
so this should be "okay".
I'm doing the migration incrementally so that folks working on main can
cherry-pick back to the release/5.9 branch. Once 5.9 is done and locked
away, then we can go through and finish the replacement. Since `None`
and `Optional` show up in contexts where they are not `llvm::None` and
`llvm::Optional`, I'm preparing the work now by going through and
removing the namespace unwrapping and making the `llvm` namespace
explicit. This should make it fairly mechanical to go through and
replace llvm::Optional with std::optional, and llvm::None with
std::nullopt. It's also a change that can be brought onto the
release/5.9 with minimal impact. This should be an NFC change.
When completing after `names:`, completion should offer the different ways you can specify the names, i.e. `arbitrary`, `named`, etc.
```
@freestanding(declaration, names: #^COMPLETE^#)
```
rdar://108535077
When an function has an async alternative, that should be preferred when we are completing in an async context. Thus, the sync method should be marked as not recommended if the current context can handle async methods.
rdar://88354910
Store whether a result is async in the `ContextFreeCodeCompletionResult` and determine whether an async method is used in a sync context when promoting the context free result to a contextual result.
rdar://78317170
Computing the type relation for every item in the code completion cache is way to expensive (~4x slowdown for global completion that imports `SwiftUI`). Instead, compute a type’s supertypes (protocol conformances and superclasses) once and write their USRs to the cache. To compute a type relation we can then check if the contextual type is in the completion item’s supertypes.
This reduces the overhead of computing the type relations (again global completion that imports `SwiftUI`) to ~6% – measured by instructions executed.
Technically, we might miss some conversions like
- retroactive conformances inside another module (because we can’t cache them if that other module isn’t imported)
- complex generic conversions (just too complicated to model using USRs)
Because of this, we never report an `unrelated` type relation for global items but always default to `unknown`.
But I believe this change covers the most common cases and is a good tradeoff between accuracy and performance.
rdar://83846531
Computing the type relation for every item in the code completion cache is way to expensive (~4x slowdown for global completion that imports `SwiftUI`). Instead, compute a type’s supertypes (protocol conformances and superclasses) once and write their USRs to the cache. To compute a type relation we can then check if the contextual type is in the completion item’s supertypes.
This reduces the overhead of computing the type relations (again global completion that imports `SwiftUI`) to ~6% – measured by instructions executed.
Technically, we might miss some conversions like
- retroactive conformances inside another module (because we can’t cache them if that other module isn’t imported)
- complex generic conversions (just too complicated to model using USRs)
Because of this, we never report an `unrelated` type relation for global items but always default to `unknown`.
But I believe this change covers the most common cases and is a good tradeoff between accuracy and performance.
rdar://83846531
[CodeCompletion] Make ExpectedTypeContext a class with explicit getters/setters
This simplifies debugging because you can break when the possible types are set and you can also search for references to `setPossibleType` to figure out where the expected types are being set.
This allows makes the distinction between cachable and non-cachable properties cleaner and allows us to more easily compute contextual information (like type relations) for cached items later.
* "description" for override completion is now annotatable
* "description" doesn't include attributes and decl introducer, but it
includes generic paramters, effects specifiers, result type clause,
and generic where clauses
* "name" now only include the name and the parameter names
* "sourcetext" should be the same
rdar://63835352
The various keyword/recommended/etc fields were parsed and added to
completions, but never actually plumbed through SourceKit. Since they're
still unused and the implementation is not particularly lightweight,
just remove for now.
Resolves rdar://82464220
To describe fine grained priorities.
Introduce 'CodeCompletionFlair' that is a set of more descriptive flags for
prioritizing completion items. This aims to replace '
SemanticContextKind::ExpressionSpecific' which was a "catch all"
prioritization flag.
struct Foo {
init(_ arg1: String, arg2: Int) {}
init(label: Int) {}
}
func test(strVal: String) {
_ = Foo(<HERE>)
}
In this case, 'strVal' was prioritized because it can use as an argument
for 'init(_:arg2:)'. However, argument labels are almost always
preferable, and if the user actually want 'strVal', they can input a few
characters to get it at the top. So we should always prioritize call
argument patterns.
rdar://77188260
Combine IsNotRecommended with NotRecommendedReason and improve the names
of the existing cases to more clearly identify the cases they apply to.
Now all not-recommended completions are required to have a reason.
Consolidate ThrowsKeyword, RethrowsKeyword, and AsyncKeyword to
EffectsSpecifierKeyword.
Abolish 'key.throwsoffset' and 'key.throwslength' as they aren't used.
This bool was true only for single-expression closure and function bodies that
do not have an explicit `return` in the source. Rename it and its associated
methods, to avoid confusion with the hasSingleExpressionBody methods on
ClosureExpr and AbstractFuncDecl. Those don't care whether the expression was
explicitly written in the source or not.
We were reporting methods that return function types that return void (rather
than returning void directly) as being invalid in contexts that expect non-void
expressions and testing for that incorrect behavior.
When completing a single argument for a trailing closure, pre-expand the
closure expression syntax instead of using a placeholder. It's not valid
to pass a non-closure anyway.
rdar://62189182
For exmaple:
func foo(_: Int, _: IntOption)
func foo(_: Float, _: FloatOption)
foo(intVal, .<HERE>)
Previously code completion suggests static member from 'IntOption' and
'FloatOption' without any prioritization. Prioritize members from
'IntOption' because the user probably wants to input them.
In such cases, 'CodeCompletionExpr' at the cursor position is
pre-typechecked to 'IntOption'. So mark results with matching type with
'ExprSpecific'.
rdar://problem/62121221
If a cross-import overlay shadows another module and has a name starting with
'_', don't present that overlay in places where module name completions are
offered and present symbols comining from that module as if they came from
the shadowed module instead.
Resolves rdar://problem/59445688
Now
* NotApplicable: The result is not relevant for type relation (e.g.
keywords, and overloads)
* Unknown: the relation was not calculated (e.g. cached results), or the
context type is unknown.
* Invalid: The result type is invalid for this context (i.e. 'Void' for
non-'Void' context)
* Unrelated: The result type has no relation to the context type
* Convertible: The result type is convertible to the context type
* Identical: The result type is identical to the context type
This reverts commit e805fe486e, which reverted
the change earlier. The problem was caused due to a simultaneous change to some
code by the PR with parsing and printing for Clang function types (#28737)
and the PR which introduced Located<T> (#28643).
This commit also includes a small change to make sure the intersecting region
is fixed: the change is limited to using the fields of Located<T> in the
`tryParseClangType` lambda.