`SynthesizedFileUnit` is a container for synthesized declarations. Currently, it
only supports module-level declarations.
It is used by the SIL differentiation transform, which generates implicit struct
and enum declarations.
This slightly regresses the standard library build (intentionally) while
generally improving the build of dispatch, foundation, xctest.
Rather than continuing to rely on the short-term hack of special casing
the standard library, identify the module where the decl originates
from. If the module is the current module, then assume that the symbol
need not be imported (static linking does not currently work on Windows
anyways). This allows for properly identifying the module where the
symbol will be homed.
Because we no longer special case the standard library here, a few known
metadata types will be incorrectly marked as being imported rather than
local.
Since linked entities which have `Shared` SILLinkage should be module
local, special case them to always be local. Without this the metadata
access function is still marked incorrectly.
With this computation we now get nearly all the cases correct. Dispatch
no longer has to rely on the linker relaxing the import to a local
binding. XCTest is also clean. Foundation misses the following case:
- `$sSS10FoundationE19_bridgeToObjectiveCAA8NSStringCyF`
The regressed cases in swiftCore are:
- `$sBi64_WV`
- `$sBi8_WV`
- `$sBi16_WV`
- `$sBi32_WV`
- `$sBpWV`
- `$syycWV`
- `$sBoWV`
- `$sBOWV`
- `$sBbWV`
- `$sytWV`
The logic here used to consist of a couple of ad-hoc checks,
followed by a general assumption that if something had already
been emitted, it could be referenced directly, whereas everything
else had to go through a GOT entry.
This is way too conservative. Instead, let's try to correctly
calculate what translation unit an entity is going to end up in.
SIL differentiability witnesses are a new top-level SIL construct mapping
an "original" SIL function and derivative configuration to derivative SIL
functions.
This patch adds `SILDifferentiabilityWitness` IRGen.
`SILDifferentiabilityWitness` has a fixed `{ i8*, i8* }` layout:
JVP and VJP derivative function pointers.
Resolves TF-1146.
This reverts commit 8247525471. While
correct, it has uncovered several issues in existing code bases that
need to be sorted out before we can land it again.
Fixes rdar://problem/57846390.
Prespecialized metadata records must refer to value witness tables that
have correct values for size and stride. In order to do that, a
prespecialized value witness table must emitted and referred to. Here,
a fully specialized value witness table is emitted.
For the moment, the value witness table is fully specialized. Having it
be specialized, though, will likely cause serious code size problems,
since it results in specialized value witness functions being generated.
rdar://problem/58088270
Metadata accessors are dependent on prespecializations of the metadata
of generic, in-module types. Those prespecializations are themselves
dependent on usages of the types in functions. Consequently, the
accessors must be emitted after all the functions are emitted.
When possible, directly reference metadata prespecializations. Doing so
is possible when the type is defined in the same module, because in
those cases the metadata accessor can be modified to ensure that the
prespecialized metadata is canonical.
rdar://problem/56994171
Added worklist of prespecializations awaiting lazy emission to
IRGenModule. Added map from type decl to list of bound types for which
prespecializations will be emitted.
For now, no specializations are emitted.
WASM currently is treated identically to the ELF paths. Collocate the
types to make it easier to ensure that all the paths are correctly
handling the emission. This adds the missed case for the module hash.
We've changed *what* is serialized by changing the way
@_dynamicReplacement is type checked, but not *how* it's
serialized. Bump the format so there aren't strange incompatibilities
because of this.
Complete the refactoring by splitting the semantic callers for the original decl of a dynamically replaced declaration.
There's also a change to the way this attribute is validated and placed. The old model visited the attribute on any functions and variable declarations it encountered in the primary. Once there, it would strip the attribute off of variables and attach the corresponding attribute to each parsed accessor, then perform some additional ObjC-related validation.
The new approach instead leaves the attribute alone. The request exists specifically to perform the lookups and type matching required to find replaced decls, and the attribute visitor no longer needs to worry about revisiting decls it has just grafted attributes onto. This also means that a bunch of parts of IRGen and SILGen that needed to fan out to the accessors to ask for the @_dynamicReplacement attribute to undo the work the type checker had done can just look at the storage itself. Further, syntactic requests for the attribute will now consistently succeed, where before they would fail dependending on whether or not the type checker had run - which was generally not an issue by the time we hit SIL.
This is a first version of cross module optimization (CMO).
The basic idea for CMO is to use the existing library evolution compiler features, but in an automated way. A new SIL module pass "annotates" functions and types with @inlinable and @usableFromInline. This results in functions being serialized into the swiftmodule file and thus available for optimizations in client modules.
The annotation is done with a worklist-algorithm, starting from public functions and continuing with entities which are used from already selected functions. A heuristic performs a preselection on which functions to consider - currently just generic functions are selected.
The serializer then writes annotated functions (including function bodies) into the swiftmodule file of the compiled module. Client modules are able to de-serialize such functions from their imported modules and use them for optimiations, like generic specialization.
The optimization is gated by a new compiler option -cross-module-optimization (also available in the swift driver).
By default this option is off. Without turning the option on, this change is (almost) a NFC.
rdar://problem/22591518
Today in far more cases we are using mangled strings to look up metadata at
runtime. If we do this for an objc class but for whatever reason we do not have
any other references to the class, the static linker will fail to link in the
relevant framework. The reason why this happens is that autolinking is treated
by the static linker as a hint that a framework may be needed rather than as a
"one must link against the framework". If there aren't any undefined symbols
needed by the app from that framework, the linker just will ignore the hint. Of
course this then causes the class lookup to fail at runtime when we use our
mangled name to try to lookup the class.
I included an Interpreter test as well as IRGen tests to make sure that we do
not regress here in the future.
NOTE: The test modifications here are due to my moving the ObjCClasses framework
out of ./test/Interpreters/Inputs => test/Inputs since I am using it in the
IRGen test along side the interpreter test.
rdar://56136123
Otherwise one TU could only require the type descriptor without metadata
and another TU could require metadata and type descriptor. Whether the
metadata access function is available would then depend on the linking
order of the two TUs.
rdar://56929811