Some requirement machine work
Rename requirement to Value
Rename more things to Value
Fix integer checking for requirement
some docs and parser changes
Minor fixes
So call the destroy on the closing type instead.
Amends the concepts areFieldsABIAccessible/isABIAccessible to take metadata
accessibility of non-copyable types into account.
rdar://133990500
Call `swift_clearSensitive` after destroying or taking "sensitive" struct types.
Also, support calling C-functions with "sensitive" parameters or return values. In SIL, sensitive types are address-only and so are sensitive parameters/return values.
Though, (small) sensitive C-structs are passed directly to/from C-functions. We need re-abstract such parameter and return values for C-functions.
Previously, when the metadata collector only collected for layout, it
was wasteful to visit the empty fields of records. Now that the field
may require a deinit call, it's necessary to visit it.
rdar://123577998
This is phase-1 of switching from llvm::Optional to std::optional in the
next rebranch. llvm::Optional was removed from upstream LLVM, so we need
to migrate off rather soon. On Darwin, std::optional, and llvm::Optional
have the same layout, so we don't need to be as concerned about ABI
beyond the name mangling. `llvm::Optional` is only returned from one
function in
```
getStandardTypeSubst(StringRef TypeName,
bool allowConcurrencyManglings);
```
It's the return value, so it should not impact the mangling of the
function, and the layout is the same as `std::optional`, so it should be
mostly okay. This function doesn't appear to have users, and the ABI was
already broken 2 years ago for concurrency and no one seemed to notice
so this should be "okay".
I'm doing the migration incrementally so that folks working on main can
cherry-pick back to the release/5.9 branch. Once 5.9 is done and locked
away, then we can go through and finish the replacement. Since `None`
and `Optional` show up in contexts where they are not `llvm::None` and
`llvm::Optional`, I'm preparing the work now by going through and
removing the namespace unwrapping and making the `llvm` namespace
explicit. This should make it fairly mechanical to go through and
replace llvm::Optional with std::optional, and llvm::None with
std::nullopt. It's also a change that can be brought onto the
release/5.9 with minimal impact. This should be an NFC change.
Instead of passing `IRGenFunction`, pass the `IRGenModule` and the `IRBuilder`.
This makes enum creation not dependent on the presence of a function.
NFC, just refactoring.
This entry point doesn't exist on older runtimes. Sema enforces
that constrained existentials don't appear in substitution maps,
however IRGen would sometimes try to instantiate metadata even
if the user didn't do that.
Fixes#64657.
rdar://99415586
Exploding very large types could cause an overflow, which in turn caused a crash later in IRGen.
Fixed by increasing width of the variables in question from 16 to 32 bit and adding an overflow check.
Previously it was testing for opened existentials specifically.
We should really teach outlining to handle local archetypes properly.
We'd have to build a generic signature for the lowered type, and that
probably means also adding requirements that are relevant to value
operations, but it would mean outlining would benefit all types, and
it would let us avoid bundling in unnecessary information from the
enclosing generic environment.
A minor side-effect of this is that we no longer bind names to
opened element type values. The names were things like \tau_1_0,
which is not very useful, especially in LLVM IR where \tau is
printed with two UTF-8 escapes.
Noncopyable types aren't really "POD", but the bit is still useful to track
whether a noncopyable type has a no-op destroy operation, so rename the
existing bit to be more specific within IRGen's implementation.
Don't rename it in the runtime or Builtin names yet, since doing so will
require a naming transition for compatibility.
The `deinit` takes full responsibility for destroying the value, using the
user-defined deinit body and implicitly destroying any remaining resources
not consumed during the deinit.
Remaining to do after this patch:
- Run the deinit for enums
- Pass generic arguments for generic move-only types
- Handle deinits that take their parameter indirectly
- Teach value witness layout about when types are move-only and/or have
deinits, so that we don't attempt to give move-only types standard
value witness tables or share box metadata with copyable payloads
`getValue` -> `value`
`getValueOr` -> `value_or`
`hasValue` -> `has_value`
`map` -> `transform`
The old API will be deprecated in the rebranch.
To avoid merge conflicts, use the new API already in the main branch.
rdar://102362022
When analyzing a struct's layout to determine whether it contains a
single non-empty field, bail upon encountering a field that is not ABI
accessible.
Previously, rather than bailing (though that was the intent), the field
was ignored. The result was that struct's with a single non-empty field
and any number of ABI inaccessible fields would be treated as if they
only had a single non-empty field. Trouble ensued.
rdar://79513293
Augment the `isSingleRetainablePointer` check that allows IRGen to avoid adding branching around retain/release operations on enums that use the null pointer extra inhabitant with a more general "can value witness extra inhabitants" method on TypeInfo, which says whether a type's retain/release operations are safe to invoke on some or all of its extra inhabitants. This lets us generalize the optimization to include things like `String?` or `ClassProtocol?` which are common types with a nullable pointer in them.
This change modifies spare bit masks so that they are arranged in
the byte order of the target platform. It also modifies and
consolidates the code that gathers and scatters bits into enum
values.
All enum-related validation tests are now passing on IBM Z (s390x)
which is a big-endian platform.
Field offset vectors are always filled out with either zero or the static layout's offset, depending on the metadata initialization strategy. This change means that the static layout's offset will only be non-zero for properties with a statically-known layout. Existing runtimes doing dynamic class layout assign class properties a zero offset if the field offset vector entry is zero and the property is zero-sized. So this effectively brings the compiler into accord with the runtime (for all newly-compiled Swift code, which will eventually be all Swift code because the current public releases of Swift 5 are not yet considered ABI-stable) and guarantees a zero value for the offset everywhere.
Since the runtime will agree with the compiler about the zero value of the offset, the compiler can continue to emit such offset variables as constant. The exception to this rule is if the class has non-fragile ObjC ancestry, in which case the ObjC runtime (which is not aware of this special rule for empty fields) will attempt to slide it along with everything else.
Fixes rdar://48031465, in which the `FixedClassMetadataBuilder` for a class with a legacy-fixed layout was writing a non-zero offset for an empty field into the field offset vector, causing the runtime to not apply the special case and thus to compute a non-zero offset, which it then attempted to copy into the global field offset variable, which the compiler had emitted as a true-constant zero.
This is essentially a long-belated follow-up to Arnold's #12606.
The key observation here is that the enum-tag-single-payload witnesses
are strictly more powerful than the XI witnesses: you can simulate
the XI witnesses by using an extra case count that's <= the XI count.
Of course the result is less efficient than the XI witnesses, but
that's less important than overall code size, and we can work on
fast-paths for that.
The extra inhabitant count is stored in a 32-bit field (always present)
following the ValueWitnessFlags, which now occupy a fixed 32 bits.
This inflates non-XI VWTs on 32-bit targets by a word, but the net effect
on XI VWTs is to shrink them by two words, which is likely to be the
more important change. Also, being able to access the XI count directly
should be a nice win.
Like we did for structs, make it so that tuple types can also get extra inhabitants from whichever element with the most, not only the first. This lets us move all of the extra inhabitant handling functionality between structs and tuples in IRGen up to the common RecordTypeInfo CRTP base.
And update the existential container's initializeWithTake implementation
in the runtime. After only allowing bitwise takable values in the
inline buffer we can use memcpy to move existential container values.
rdar://31414907
SR-343
Fixes a regression in the source compatibility suite which I had a
lot of trouble extracting into a separate test case.
Most of this patch is just moving the outlining code into a separate
file and organizing it into a helper class instead of copy/pasting
so much code. The main functional change is implicit in the difference
between collecting formal metadata and collecting it for layout, which
then is exploited in bindMetadataParameters.
As a secondary change, stop collecting metadata for class-bounded
archetypes; we don't actually need it to do value operations.
When dealing with record types, the outliner had a peephole optimization that is apparently invalid in a corner-case (see new test case)
If we added an archetypes then we *have* to emit type metadata for any containing record type, else we might skip one of the “child” records in our recursive type walk