Similar to the existing variant which takes a fixed size, the new
variant which takes a dynamic size digs the relevant address and
alignment values out of the Address struct and passes them along.
In preparation for moving to llvm's opaque pointer representation
replace getPointerElementType and CreateCall/CreateLoad/Store uses that
dependent on the address operand's pointer element type.
This means an `Address` carries the element type and we use
`FunctionPointer` in more places or read the function type off the
`llvm::Function`.
`PointerType::getElementType` has been removed entirely as part of the
opaque pointers migration. Update to `getPointerElementType` for now
until we've also migrated.
This is ported from the SavedInsertionPointRAII at the SIL level. I thought that
I needed this to accomplish some of my recent work, but I was wrong. Still
seemed useful enough to upstream it.
In 1b2842bf902a8b52acbef2425120533b63be5ae3 this API was changed.
It seems the right thing to do is turn this into the new alignment
type by doing MaybeAlign(alignment) which is what this patch does.
When we generate code that asks for complete metadata for a fully concrete specific type that
doesn't have trivial metadata access, like `(Int, String)` or `[String: [Any]]`,
generate a cache variable that points to a mangled name, and use a common accessor function
that turns that cache variable into a pointer to the instantiated metadata. This saves a bunch
of code size, and should have minimal runtime impact, since the demangling of any string only
has to happen once.
This mostly just works, though it exposed a couple of issues:
- Mangling a type ref including objc protocols didn't cause the objc protocol record to get
instantiated. Fixed as part of this patch.
- The runtime type demangler doesn't correctly handle retroactive conformances. If there are
multiple retroactive conformances in a process at runtime, then even though the mangled string
refers to a specific conformance, the runtime still just picks one without listening to the
mangler. This is left to fix later, rdar://problem/53828345.
There is some more follow-up work that we can do to further improve the gains:
- We could improve the runtime-provided entry points, adding versions that don't require size
to be cached, and which can handle arbitrary metadata requests. This would allow for mangled
names to also be used for incomplete metadata accesses and improve code size of some generic
type accessors. However, we'd only be able to take advantage of the new entry points in
OSes that ship a new runtime.
- We could choose to always symbolic reference all type references, which would generally reduce
the size of mangled strings, as well as make runtime demangling more efficient, since it wouldn't
need to hit the runtime caches. This would however require that we be able to handle symbolic
references across files in the MetadataReader in order to avoid regressing remote mirror
functionality.
To display a failure message in the debugger, create a function in the debug info which has the name of the failure message.
The debug location of the trap/cond_fail is then wrapped into this function and the function is declared as "inlined".
In case the debugger stops at the trap instruction, it displays the inline function, which looks like the failure message.
For example:
* thread #1, queue = 'com.apple.main-thread', stop reason = EXC_BAD_INSTRUCTION (code=EXC_I386_INVOP, subcode=0x0)
frame #0: 0x0000000100000cbf a.out`testit3(_:) [inlined] Unexpectedly found nil while unwrapping an Optional value at test.swift:14:11 [opt]
11
12 @inline(never)
13 func testit(_ a: Int?) -> Int {
-> 14 return a!
15 }
16
This change is currently not enabled by default, but can be enabled with the option "-Xllvm -enable-trap-debug-info".
Enabling this feature needs some changes in lldb. When the lldb part is done, this option can be removed and the feature enabled by default.
To display a failure message in the debugger, create a function in the debug info which has the name of the failure message.
The debug location of the trap/cond_fail is then wrapped into this function and the function is declared as "inlined".
In case the debugger stops at the trap instruction, it displays the inline function, which looks like the failure message.
For example:
* thread #1, queue = 'com.apple.main-thread', stop reason = EXC_BAD_INSTRUCTION (code=EXC_I386_INVOP, subcode=0x0)
frame #0: 0x0000000100000cbf a.out`testit3(_:) [inlined] Unexpectedly found nil while unwrapping an Optional value at test.swift:14:11 [opt]
11
12 @inline(never)
13 func testit(_ a: Int?) -> Int {
-> 14 return a!
15 }
16
This change is currently not enabled by default, but can be enabled with the option "-Xllvm -enable-trap-debug-info".
Enabling this feature needs some changes in lldb. When the lldb part is done, this option can be removed and the feature enabled by default.
PR #14729 made more calls to llvm.trap() non-mergeable. This follow-up
adds asserts to IRBuilder which make it harder to accidentally introduce
mergeable calls to llvm.trap() in the future.
The newly-added assertions exposed an issue in GenBuiltin while
compiling parts of the stdlib. This PR fixes the issue.
Suggested by Adrian Prantl!
rdar://32772768
We compile with a pedantic warning that complains about these things,
and the massive flood of warnings is actually causing problems for the
build infrastructure.
To make this stick, I've disallowed direct use of that overload of
CreateCall. I've left the Constant overloads available, but eventually
we might want to consider fixing those, too, just to get all of this
code out of the business of manually remembering to pass around
attributes and calling conventions.
The test changes reflect the fact that we weren't really setting
attributes consistently at all, in this case on value witnesses.
The goals here are four-fold:
- provide cleaner internal abstractions
- avoid IR bloat from extra bitcasts
- avoid recomputing function-type lowering information
- allow more information to be propagated from the function
access site (e.g. class_method) to the call site
Use this framework immediately for class and protocol methods.
Replace `NameOfType foo = dyn_cast<NameOfType>(bar)` with DRY version `auto foo = dyn_cast<NameOfType>(bar)`.
The DRY auto version is by far the dominant form already used in the repo, so this PR merely brings the exceptional cases (redundant repetition form) in line with the dominant form (auto form).
See the [C++ Core Guidelines](https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md#es11-use-auto-to-avoid-redundant-repetition-of-type-names) for a general discussion on why to use `auto` to avoid redundant repetition of type names.
It is not valid LLVM IR to have a function call without a location to an
inlinable function inside a function with debug info — this makes it impossible
to construct inline information.
This patch adds an assertion and fixes up several places across IRGen where
such a situation could happen.
rdar://problem/26955467
Each runtime function definition in RuntimeFunctions.def states which calling convention
should be used for this runtime function. But IRGen and LLVMPasses were not always
properly propagating this declared calling convention all the way down to llvm's Call instructions.
In many cases, the standard C convention was set for the call irrespective of the actual calling
convention defined for a given runtime function. As a result, incorrect code was generated.
This commit tries to fix all those places, where such a mismatch was found. In many cases this is
achieved by defining a helper function CreateCall in such a way that makes sure that the call instruction
gets the same calling convention as the one used by its callee operand.