- Separate out a uniquable KeyPathPattern that describes the context-free shape of the key path, with generic parameters and (eventually) subscript index slots factored out.
- Add component kinds for gettable and settable properties.
This gives big code size wins for unused types and also for types, which are never used in a generic context.
Also it reduces the amount of symbols in the symbol table.
The size wins heavily depend on the project. I have seen binary size reductions from 0 to 20% on real world projects.
rdar://problem/30119960
This is NFC in intent, but I had to restructure the code to emit more
of the lists "inline", which means I inevitably altered some IRGen
emission patterns in ways that are visible to tests:
- GenClass emits property/ivar/whatever descriptors in a somewhat
different order.
- An ext method type list is now emitted as just an array, not a struct
containing only that array.
- Protocol descriptors are no longer emitted as packed structs.
I was sorely tempted to stop using packed structs for all the metadata
emission, but didn't really want to update that many tests in one go.
to correctly handle generalized protocol requirements.
The major missing pieces here are that the conformance search
algorithms in both the AST (type substitution) and IRGen
(witness table reference emission) need to be rewritten to
back-track requirement sources, and the AST needs to actually
represent this stuff in NormalProtocolConformances instead
of just doing ???.
The new generality isn't tested yet; I'm looking into that,
but I wanted to get the abstractions in place first.
This was an unnecessary complication and didn't make a lot of
logical sense, because we can recover the witness table from
substitutions when we call a @convention(witness_method) anyway.
Also, to fix materializeForSet for generic subscripts, I want the
materializeForSet *callback* of a protocol witness to have
@convention(witness_method), which requires representing such
functions as a single function pointer in IRGen.
Use the generic type lowering algorithm described in
"docs/CallingConvention.rst#physical-lowering" to map from IRGen's explosion
type to the type expected by the ABI.
Change IRGen to use the swift calling convention (swiftcc) for native swift
functions.
Use the 'swiftself' attribute on self parameters and for closures contexts.
Use the 'swifterror' parameter for swift error parameters.
Change functions in the runtime that are called as native swift functions to use
the swift calling convention.
rdar://19978563
SubstitutionList is going to be a more compact representation of
a SubstitutionMap, suitable for inline allocation inside another
object.
For now, it's just a typedef for ArrayRef<Substitution>.
Separate formal lowered types from SIL types.
The SIL type of an argument will depend on the SIL module's conventions.
The module conventions are determined by the SIL stage and LangOpts.
Almost NFC, but specialized manglings are broken incidentally as a result of
fixes to the way passes handle book-keeping of aruments. The mangler is fixed in
the subsequent commit.
Otherwise, NFC is intended, but quite possible do to rewriting the logic in many
places.
Fixed for the difference of Cygwin with other Windows variants (MSVC,
Itanium, MinGW).
- The platform name is renamed to "cygwin" from "windows" which is used
for searching the standard libraries.
- The consideration for DLL storage class (DllExport/DllImport) is not
required for Cygwin and MinGW. There is no problem when linking in
these environment.
- Cygwin should use large memory model as default.(This may be changed
if someone ports to 32bit)
- Cygwin and MinGW should use the autolink feature in the sameway of
Linux due to the linker's limit.
Rather than directly using the ArchetypeBuilder associated with a
canonical generic signature, use a canonical GenericEnvironment
associated with that canonical generic signature. This has a few
benefits:
* It's cleaner to not have IRGen working with archetype builders;
GenericEnvironment is the right abstraction for mapping between
dependent types and archetypes for a specific context.
* It helps us separate the archetype builder from a *specific*
set of archetypes. This is an ongoing refactor that is intended to
allow us to re-use archetype builders across different generic
environments.
As part of this, ArchetypeBuilder::substDependentType() has gone away
in favor of GenericEnvironment::mapTypeIntoContext().
This attribute is used in the simd overlay. To ensure we can layout
SIMD types correctly, emit a fixed type descriptor instead of a
field type descriptor for these types.
There was some duplication here, and also a potential
memory management issue; it appears that we were
converting a temporary std::string to a StringRef
when setting the section name of a global.
Ensure they get emitted at the end of the job by the dispatcher, and
also use a proper mangling and shared linkage for these symbols so
that if multiple threads emit the same descriptor it gets merged.
The new tests attempt to exercise these scenarios.
Fixes <rdar://problem/27906876>.
for weak semantics, that is!
94a9c512b9 made some changes to loading
weak references by adding some information in the lower bits with
respect to locking. These bits need to be masked out when performing a
load, such as when we want to get the metadata pointer for a class
instance. This normally works fine when going through the normal weak
loading functions in the runtime.
When the runtime function swift_ClassMirror_subscript gets the offset of
one of its stored properties, it immediately packages it into the the
ad-hoc existential container, known as just `Mirror` in the runtime.
However, the weak reference isn't aligned! It has bit 1 set. We weren't
loading the weak reference here as we would during normal SILGen, such
as with a weak_load instruction. Simulate that here and make the
reference strong before putting it into the Mirror container, which also
clears those lower bits.
rdar://problem/27475034
There are still a couple of other cases to handle, namely the
unowned(safe) and unowned(unsafe) reference kinds. There may be other
places where an unaligned pointer is problematic in the runtime, which
we should audit for correctness.
rdar://problem/27809991
Emit a 16-bit constant that tracks the version of the reflection
metadata emitted into binaries. This can be used to cross-check
what is supported by the SwiftRemoteMirror library with the new
version API.
rdar://problem/27251582
The approach here is to split this into two cases:
- If all case payloads have a fixed size, spare bits may be
potentially used to differentiate between cases, and the
remote reflection library does not have enough information to
compute the layout itself.
However, the total size must be fixed, so IRGen just emits a
builtin type descriptor (which I need to rename to 'fixed type
descriptor' since these are also used for imported value types,
and now, certain enums).
- If at least one case has a size that depends on a generic
parameter or is a resilient type, IRGen does not know the size,
but this means fancy tricks with spare bits cannot be used either.
The remote reflection library uses the same approach as the
runtime, basically taking the maximum of the payload size and
alignment, and adding a tag byte.
As with single-payload enums, we produce a new kind of
RecordTypeInfo, this time with a field for every enum case.
All cases start at offset zero (but of course this might change,
if for example we put the enum tag before the address point).
Also, just as with single-payload enums, there is no remote
'project case index' operation on ReflectionContext yet.
So the the main benefit from this change is that we don't entirely
give up when doing layout of class instances containing enums;
however, tools still cannot look inside the enum values themselves,
except in the simplest cases involving optionals.
Notably, the remote reflection library finally understands all
of the standard library's collection types -- Array, Character,
Dictionary, Set, and String.
@convention(witness_method) values were changed to carry a pointer to their source witness table, but the type info wasn't changed to match. Fixing this fixes rdar://problem/26268544.
Instead of hooking into nominal type and extension emission
and walking all conformances of those declarations, let's
just directly hook into the logic for emitting conformances.
This fixes an issue where we would apparently emit duplicate
conformances, as well as unnecessary conformances that are
defined elsewhere.
When we encounter a protocol typeref, we have to know if its @objc,
class-bound, or opaque, so make sure we provide the necessary
information when imported protocols are referenced.
Previously we would emit both a builtin descriptor and field
descriptor for imported classes, but we only need the latter.
Untangle some code and fix a crash with imported Objective-C
generics in the process.
Fixes <rdar://problem/26498484>.
We were recovering metadata from generic boxes by reading
the instantiated payload metadata from the box's metadata,
but this approach doesn't work for fixed-size boxes, whose
metadata does not store the payload metadata at all.
Instead, emit a capture descriptor with no metadata sources
and a single capture, using the lowered AST type appearing
in the alloc_box instruction that emitted the box.
Since box metadata is shared by all POD types of the same
size, and all single-retainable pointer payloads, the
AST type might not accurately reflect what is actually in
the box.
However, this type is *layout compatible* with the box
payload, at least enough to know where the retainable
pointers are, because after all IRGen uses this type to
synthesize the destructor.
Fixes <rdar://problem/26314060>.
When emitting capture descriptors for functions with a smaller number of parameters
than SIL parameters, the compiler can crash indexing into the heap layout's element
types, because the capture index underflows to UINT_MAX.
rdar://problem/26404583
Previously, we had hacks in place to eagerly emit everything in
the global ExternalDefinitions list. These can now be removed,
at least at the IRGen layer.