It cleans up shouldTransformParameter, fixing a corner-case for optional function parameter, and re-creates *all* partial applies that only contain function/optional function parameters
SIL is not in a consistent state during the lowering pass. We just make sure it is correct at the end of the pass. This broke PR https://github.com/apple/swift/pull/13283 (verifying convert_function instructions in the builder)
To workaround this issue we will be running the builder’s verifier when the SIL stage != SILStage::Lowered
The SIL stage is set to lowered at the end of the module pass. This means that if this is the first lowering pass said workaround would not work.
This commit sets the SIL stage to lowered at the beginning of the module pass instead
We can just !SILFunction::hasQualifiedOwnership(). Plus as Andy pointed out,
even ignoring the functional aspects, having APIs with names this close can
create confusion.
And unbreak the LLDB testsuite.
This patch fixes three problems with the original implementation:
- Use SILBuilderWithScope instead of SILBuilder to avoid holes in the
lexical scopes.
- Use an artificial location for stores to the alloca to avoid the debugger
stopping before the variable is initialized.
- Recognize debug_value_addr instructions referring to an alloc_stack
instruction to avoid introducing an extra indirection in the debug info.
rdar://problem/31975108
Support for @noescape SILFunctionTypes.
These are the underlying SIL changes necessary to implement the new
closure capture ABI.
Note: This includes a change to function name mangling that
primarily affects reabstraction thunks.
The new ABI will allow stack allocation of non-escaping closures as a
simple optimization.
The new ABI, and the stack allocation optimization, also require
closure context to be @guaranteed. That will be implemented as the
next step.
Many SIL passes pattern match partial_apply sequences. These all
needed to be fixed to handle the convert_function that SILGen now
emits. The conversion is now needed whenever a function declaration,
which has an escaping type, is passed into a @NoEscape argument.
In addition to supporting new SIL patterns, some optimizations like
inlining and SIL combine are now stronger which could perturb some
benchmark results.
These underlying SIL changes should be merged now to avoid conflicting
with other work. Minor benchmark discrepancies can be investigated as part of
the stack-allocation work.
* Add a noescape attribute to SILFunctionType.
And set this attribute correctly when lowering formal function types to SILFunctionTypes based on @escaping.
This will allow stack allocation of closures, and unblock a related ABI change.
* Flip the polarity on @noescape on SILFunctionType and clarify that
we don't default it.
* Emit withoutActuallyEscaping using a convert_function instruction.
It might be better to use a specialized instruction here, but I'll leave that up to Andy.
Andy: And I'll leave that to Arnold who is implementing SIL support for guaranteed ownership of thick function types.
* Fix SILGen and SIL Parsing.
* Fix the LoadableByAddress pass.
* Fix ClosureSpecializer.
* Fix performance inliner constant propagation.
* Fix the PartialApplyCombiner.
* Adjust SILFunctionType for thunks.
* Add mangling for @noescape/@escaping.
* Fix test cases for @noescape attribute, mangling, convert_function, etc.
* Fix exclusivity test cases.
* Fix AccessEnforcement.
* Fix SILCombine of convert_function -> apply.
* Fix ObjC bridging thunks.
* Various MandatoryInlining fixes.
* Fix SILCombine optimizeApplyOfConvertFunction.
* Fix more test cases after merging (again).
* Fix ClosureSpecializer. Hande convert_function cloning.
Be conservative when combining convert_function. Most of our code doesn't know
how to deal with function type mismatches yet.
* Fix MandatoryInlining.
Be conservative with function conversion. The inliner does not yet know how to
cast arguments or convert between throwing forms.
* Fix PartialApplyCombiner.
Now that the GenericSignatureBuilder is no longer sensitive to the input
module, stop uniquing the canonical GSBs based on that module. The main
win here is when deserializing a generic environment: we would end up
creating a canonical GSB in the module we deserialized and another
canonical GSB in the module in which it is used.
This replaces the '[volatile]' flag. Now, class_method and
super_method are only used for vtable dispatch.
The witness_method instruction is still overloaded for use
with both ObjC protocol requirements and Swift protocol
requirements; the next step is to make it only mean the
latter, also using objc_method for ObjC protocol calls.
introduce a common superclass, SILNode.
This is in preparation for allowing instructions to have multiple
results. It is also a somewhat more elegant representation for
instructions that have zero results. Instructions that are known
to have exactly one result inherit from a class, SingleValueInstruction,
that subclasses both ValueBase and SILInstruction. Some care must be
taken when working with SILNode pointers and testing for equality;
please see the comment on SILNode for more information.
A number of SIL passes needed to be updated in order to handle this
new distinction between SIL values and SIL instructions.
Note that the SIL parser is now stricter about not trying to assign
a result value from an instruction (like 'return' or 'strong_retain')
that does not produce any.