When an instruction is "deleted" from the SIL, it is put into the SILModule::scheduledForDeletion list.
The instructions in this list are eventually deleted for real in SILModule::flushDeletedInsts(), which is called by the pass manager after each pass run.
In other words: instruction deletion is deferred to the end of a pass.
This avoids dangling instruction pointers within the run of a pass and in analysis caches.
Note that the analysis invalidation mechanism ensures that analysis caches are invalidated before flushDeletedInsts().
In theory we could map opened archetypes per module because opened archetypes _should_ be unique across the module.
But currently in some rare cases SILGen re-uses the same opened archetype in multiple functions.
The fix is to add the SILFunction to the map's key.
That also requires that we update the map whenever instructions are moved from one function to another.
This fixes a compiler crash.
rdar://76916931
This removes the ambiguity when casting from a SingleValueInstruction to SILNode, which makes the code simpler. E.g. the "isRepresentativeSILNode" logic is not needed anymore.
Also, it reduces the size of the most used instruction class - SingleValueInstruction - by one pointer.
Conceptually, SILInstruction is still a SILNode. But implementation-wise SILNode is not a base class of SILInstruction anymore.
Only the two sub-classes of SILInstruction - SingleValueInstruction and NonSingleValueInstruction - inherit from SILNode. SingleValueInstruction's SILNode is embedded into a ValueBase and its relative offset in the class is the same as in NonSingleValueInstruction (see SILNodeOffsetChecker).
This makes it possible to cast from a SILInstruction to a SILNode without knowing which SILInstruction sub-class it is.
Casting to SILNode cannot be done implicitly, but only with an LLVM `cast` or with SILInstruction::asSILNode(). But this is a rare case anyway.
* add a BasicBlockSetVector class
* add a second argument to BasicBlockFlag::set, for the set value.
* rename BasicBlockSet::remove -> BasicBlockSet::erase.
* add a MaxBitfieldID statistics value in SILFunction.cpp
This removes the ambiguity when casting from a SingleValueInstruction to SILNode, which makes the code simpler. E.g. the "isRepresentativeSILNode" logic is not needed anymore.
Also, it reduces the size of the most used instruction class - SingleValueInstruction - by one pointer.
Conceptually, SILInstruction is still a SILNode. But implementation-wise SILNode is not a base class of SILInstruction anymore.
Only the two sub-classes of SILInstruction - SingleValueInstruction and NonSingleValueInstruction - inherit from SILNode. SingleValueInstruction's SILNode is embedded into a ValueBase and its relative offset in the class is the same as in NonSingleValueInstruction (see SILNodeOffsetChecker).
This makes it possible to cast from a SILInstruction to a SILNode without knowing which SILInstruction sub-class it is.
Casting to SILNode cannot be done implicitly, but only with an LLVM `cast` or with SILInstruction::asSILNode(). But this is a rare case anyway.
```
@_specialize(exported: true, spi: SPIGroupName, where T == Int)
public func myFunc() { }
```
The specialized entry point is only visible for modules that import
using `_spi(SPIGroupName) import ModuleDefiningMyFunc `.
rdar://64993425
This attribute allows to define a pre-specialized entry point of a
generic function in a library.
The following definition provides a pre-specialized entry point for
`genericFunc(_:)` for the parameter type `Int` that clients of the
library can call.
```
@_specialize(exported: true, where T == Int)
public func genericFunc<T>(_ t: T) { ... }
```
Pre-specializations of internal `@inlinable` functions are allowed.
```
@usableFromInline
internal struct GenericThing<T> {
@_specialize(exported: true, where T == Int)
@inlinable
internal func genericMethod(_ t: T) {
}
}
```
There is syntax to pre-specialize a method from a different module.
```
import ModuleDefiningGenericFunc
@_specialize(exported: true, target: genericFunc(_:), where T == Double)
func prespecialize_genericFunc(_ t: T) { fatalError("dont call") }
```
Specially marked extensions allow for pre-specialization of internal
methods accross module boundries (respecting `@inlinable` and
`@usableFromInline`).
```
import ModuleDefiningGenericThing
public struct Something {}
@_specializeExtension
extension GenericThing {
@_specialize(exported: true, target: genericMethod(_:), where T == Something)
func prespecialize_genericMethod(_ t: T) { fatalError("dont call") }
}
```
rdar://64993425
The leak happened in this scenario:
1. A function becomes dead and gets deleted (which means: it gets added to the zombie-list)
2. A function with the same name is created again. This can happen with specializations.
In such a case we just removed the zombie function from the zombie-list without deleting it.
But we cannot delete zombie functions, because they might still be referenced by metadata, like debug-info.
Therefore the right fix is to resurrect the zombie function if a new function is created with the same name.
rdar://problem/66931238
LLVM, as of 77e0e9e17daf0865620abcd41f692ab0642367c4, now builds with
-Wsuggest-override. Let's clean up the swift sources rather than disable
the warning locally.
This became necessary after recent function type changes that keep
substituted generic function types abstract even after substitution to
correctly handle automatic opaque result type substitution.
Instead of performing the opaque result type substitution as part of
substituting the generic args the underlying type will now be reified as
part of looking at the parameter/return types which happens as part of
the function convention apis.
rdar://62560867
Specifically, I split it into 3 initial categories: IR, Utils, Verifier. I just
did this quickly, we can always split it more later if we want.
I followed the model that we use in SILOptimizer: ./lib/SIL/CMakeLists.txt vends
a macro (sil_register_sources) to the sub-folders that register the sources of
the subdirectory with a global state variable that ./lib/SIL/CMakeLists.txt
defines. Then after including those subdirs, the parent cmake declares the SIL
library. So the output is the same, but we have the flexibility of having
subdirectories to categorize source files.