In C++20, the compiler will synthesize a version of the operator
with its arguments reversed to ease commutativity. This reversed
version is ambiguous with the hand-written operator when the
argument is const but `this` isn't.
Function exiting terminators don't allocate on-stack pack metadata
packs. The packs would have been materialized when the value is
defined.
Fixes a SILVerifier failure resulting from a sequence like
```
alloc_pack_metadata
dealloc_pack_metadata
return
```
resulting from inserting the `alloc_pack_metadata` on behalf of the
return, inserting the `dealloc_pack_metadata` on the dominance frontier,
and fixing up stack nesting.
`ReadOnly`/`ArgMemOnly` were mostly moved over, but a few were missed.
Update them all. Also default to `unknown` for no memory effects rather
than none (ie. we should be conservative).
Previously, `end_borrow`s were rewritten last in order to be able to
find them when inserting `end_borrow`s on behalf of newly created
`load_borrow`s. Generalize this to rewriting all lifetime-ending users
last. This is necessary for the lifetime utilities used by `isLoadCopy`
to remain accurate when rewriting a `copy_value` previously determined
to be from a load-copy pair.
We can't really treat them as always-initialized because that makes move checking
think that there's a value to destroy even on initialization, causing deinits to
run on uninitialized memory. Remove my previous hack, and use a `zeroInitializer`
to initialize the value state when emitting `init`, which is where we really need
the bootstrapping-into-initialized behavior. rdar://113057256
Instead of assuming that the list of instructions known to allocate pack
metadata is exhaustive and returning false from mayRequirePackMetadata
for all others, consider the types of the results and operands of other
instructions and look for packs.
Eliminated HasConcretePack and added HasPack and HasPackArchetype.
Renamed the old `hasPack` to `hasAnyPack`; as before, it means that the
type has a parameter pack, a pack, or a pack archetype.
In preparation for adding addition unary instructions which
`mayRequirePackMetadata`, group the instructions which already may
produce pack metadata depending on their single operand's type together.
SelectEnumInstBase will be templated in the next commit.
Instead of using templated SelectEnumInstBase everywhere, introduce
a new wrapper type SelectEnumOperation.
This is phase-1 of switching from llvm::Optional to std::optional in the
next rebranch. llvm::Optional was removed from upstream LLVM, so we need
to migrate off rather soon. On Darwin, std::optional, and llvm::Optional
have the same layout, so we don't need to be as concerned about ABI
beyond the name mangling. `llvm::Optional` is only returned from one
function in
```
getStandardTypeSubst(StringRef TypeName,
bool allowConcurrencyManglings);
```
It's the return value, so it should not impact the mangling of the
function, and the layout is the same as `std::optional`, so it should be
mostly okay. This function doesn't appear to have users, and the ABI was
already broken 2 years ago for concurrency and no one seemed to notice
so this should be "okay".
I'm doing the migration incrementally so that folks working on main can
cherry-pick back to the release/5.9 branch. Once 5.9 is done and locked
away, then we can go through and finish the replacement. Since `None`
and `Optional` show up in contexts where they are not `llvm::None` and
`llvm::Optional`, I'm preparing the work now by going through and
removing the namespace unwrapping and making the `llvm` namespace
explicit. This should make it fairly mechanical to go through and
replace llvm::Optional with std::optional, and llvm::None with
std::nullopt. It's also a change that can be brought onto the
release/5.9 with minimal impact. This should be an NFC change.
The `hop_to_executor` instruction is a synchronization point and any kind of other code might run at this point,
which potentially can release objects.
Fixes a miscompile
rdar://110924258
Rather than emitting markers for every single instruction of the
relevant sorts, check whether the instructions' types involve packs.
Only record them as potential on-stack pack metadata emitters if they
do.
The new alloc_pack_metadata and dealloc_pack_metadata are inserted as
part of IRGen lowering. The former indicates that the next instruction
might result in on-stack pack metadata being emitted. The latter
indicates that this is the position at which metadata emitted on behalf
of its operand should be cleaned up.
Although nonescaping closures are representationally trivial pointers to their
on-stack context, it is useful to model them as borrowing their captures, which
allows for checking correct use of move-only values across the closure, and
lets us model the lifetime dependence between a closure and its captures without
an ad-hoc web of `mark_dependence` instructions.
During ownership elimination, We eliminate copy/destroy_value instructions and
end the partial_apply's lifetime with an explicit dealloc_stack as before,
for compatibility with existing IRGen and non-OSSA aware passes.
Having added these, I'm not entirely sure we couldn't just use
alloc_stack and dealloc_stack. Well, if we find ourselves adding
a lot of redundancy with those instructions (e.g. around DI), we
can always go back and rip these out.
I've also fixed this so that it should work on instructions that
define multiple values. Someday we'll change all the open_existential
instructions to produce different values for the type dependency and
the value result; today is not that day, though.
Instead of setting the parent pointer to null, set the `lastInitializedBitfieldID` to -1.
This allows to keep the parent block information, even when an instruction is removed from it's list.
`getValue` -> `value`
`getValueOr` -> `value_or`
`hasValue` -> `has_value`
`map` -> `transform`
The old API will be deprecated in the rebranch.
To avoid merge conflicts, use the new API already in the main branch.
rdar://102362022
Added new C++-to-Swift callback for isDeinitBarrier.
And pass it CalleeAnalysis so it can depend on function effects. For
now, the argument is ignored. And, all callers just pass nullptr.
Promoted to API the mayAccessPointer component predicate of
isDeinitBarrier which needs to remain in C++. That predicate will also
depends on function effects. For that reason, it too is now passed a
BasicCalleeAnalysis and is moved into SILOptimizer.
Also, added more conservative versions of isDeinitBarrier and
maySynchronize which will never consider side-effects.
It makes no sense to operate on the block's instruction list without
also including SILBasicBlock.h anyway. Similarly, it doesn't make
sense to query the entry block without including SILFunction.h.
Now we can call these simple getters in critical-path loops assuming
they are as cheap as a load. I was avoiding calling these in critical
path code, which resulted in less readability and consistency across
the code base.
The use of the SWIFT_INLINE_BITFIELD macros in SILNode were a constant source of confusion and bugs.
With this refactoring I tried to simplify the definition of "shared fields" in SILNode, SILValue and SILInstruction classes:
* Move `kind`, `locationKindAndFlags` and the 32-bit fields out of the 64-bitfield into their own member variables. This avoids _a lot_ of manual bit position computations.
* Now we have two separate "shared fields": an 8-bit field (e.g. for boolean flags) and a 32-bit field (e.g. for indices, which can potentially get large). Both fields can be used independently. Also, they are not "bit fields" per se. Instructions can use the field e.g. as a `bool`, `uint32_t`, or - if multiple flags are to be stored - as a packed bit field.
* With these two separate fields, we don't have the need for defining bitfields both in a base class _and_ in a derived value/instruction class. We can get rid of the complex logic which handles such cases. Just keep a check to catch accidental overlaps of fields in base and derived classes.
* Still use preprocessor macros for the implementation, but much simpler ones than before.
* Add documentation.
As we do with field indices for struct instructions.
This avoids quadratic behavior in case of enums with lots of cases.
Also: cache field and enum case indices in the SILModule.
With this change, the SILVerifier should now catch and reject the appearance
of a hop_to_executor between the get_continuation and await_continuation
instructions.