Although I don't plan to bring over new assertions wholesale
into the current qualification branch, it's entirely possible
that various minor changes in main will use the new assertions;
having this basic support in the release branch will simplify that.
(This is why I'm adding the includes as a separate pass from
rewriting the individual assertions)
This allows us to propagate abstraction patterns from optional parameters
all the way to closure emission, which optimizes some code patterns but
(more importantly) propagates our knowledge that we're converting to an
`@isolated(any)` function type down to closure emission, allowing us to
set the isolation correctly.
There are still some conversion cases missing --- if we can't combine
conversions for whatever reason, we should at least shift our knowledge
that we need to produce an `@isolated(any)` type down, the same way that
we shift it when emitting a closure that we can't directly emit in the
target abstraction pattern. But this completes the obvious cases of
peepholing for closure emission.
a closure expression, then don't actually do it. The long term plan is
to actually do this, which should just be a matter of taking some of the
code out of reabstraction thunk emission and using it in prolog/epilog/return
emission. In the short term, the goal is just to get the conversion
information down to the closure emitter so that we can see that we're
erasing into an `@isolated(any)` type and then actually erase the
closure's isolation properly instead of relying on type-based erasure,
which can't handle parameter/capture isolation correctly.
Reformatting everything now that we have `llvm` namespaces. I've
separated this from the main commit to help manage merge-conflicts and
for making it a bit easier to read the mega-patch.
This is phase-1 of switching from llvm::Optional to std::optional in the
next rebranch. llvm::Optional was removed from upstream LLVM, so we need
to migrate off rather soon. On Darwin, std::optional, and llvm::Optional
have the same layout, so we don't need to be as concerned about ABI
beyond the name mangling. `llvm::Optional` is only returned from one
function in
```
getStandardTypeSubst(StringRef TypeName,
bool allowConcurrencyManglings);
```
It's the return value, so it should not impact the mangling of the
function, and the layout is the same as `std::optional`, so it should be
mostly okay. This function doesn't appear to have users, and the ABI was
already broken 2 years ago for concurrency and no one seemed to notice
so this should be "okay".
I'm doing the migration incrementally so that folks working on main can
cherry-pick back to the release/5.9 branch. Once 5.9 is done and locked
away, then we can go through and finish the replacement. Since `None`
and `Optional` show up in contexts where they are not `llvm::None` and
`llvm::Optional`, I'm preparing the work now by going through and
removing the namespace unwrapping and making the `llvm` namespace
explicit. This should make it fairly mechanical to go through and
replace llvm::Optional with std::optional, and llvm::None with
std::nullopt. It's also a change that can be brought onto the
release/5.9 with minimal impact. This should be an NFC change.
This required quite a bit of infrastructure for emitting this kind of
tuple expression, although I'm not going to claim they really work yet;
in particular, I know the RValue constructor is going to try to explode
them, which it really shouldn't.
It also doesn't include the caller side of returns, for which I'll need
to teach ResultPlan to do the new abstraction-pattern walk. But that's
next.
The callers to ConversionInitialization::tryPeephole assume that, if the conversion peephole
succeeded, that the peepholed result was fully emitted into the initialization. However, if
the ConversionInitialization sat on top of an in-memory initialization, then tryPeephole would
only set the value of the ConversionInitialization, without forwarding the value into the underlying
initialization, causing code generation to proceed leaving the underlying memory uninitialized.
This problem becomes exposed now when literal closures are emitted with a return value that is
indirectly returned and also reabstracted, and the return expression undergoes a ping-pong reabstraction
pair: we see through the conversions and peephole away the reabstractions, but fail to emplace the
result in the indirect return slot.
Fixes rdar://92654098
Literal closures are only ever directly referenced in the context of the expression they're written in,
so it's wasteful to emit them at their fully-substituted calling convention and then reabstract them if
they're passed directly to a generic function. Avoid this by saving the abstraction pattern of the context
before emitting the closure, and then lowering its main entry point's calling convention at that
level of abstraction. Generalize some of the prolog/epilog code to handle converting arguments and returns
to the correct representation for a different abstraction level.
Literal closures are only ever directly referenced in the context of the expression they're written in,
so it's wasteful to emit them at their fully-substituted calling convention and then reabstract them if
they're passed directly to a generic function. Avoid this by saving the abstraction pattern of the context
before emitting the closure, and then lowering its main entry point's calling convention at that
level of abstraction. Generalize some of the prolog/epilog code to handle converting arguments and returns
to the correct representation for a different abstraction level.
Literal closures are only ever directly referenced in the context of the expression they're written in,
so it's wasteful to emit them at their fully-substituted calling convention and then reabstract them if
they're passed directly to a generic function. Avoid this by saving the abstraction pattern of the context
before emitting the closure, and then lowering its main entry point's calling convention at that
level of abstraction. Generalize some of the prolog/epilog code to handle converting arguments and returns
to the correct representation for a different abstraction level.
This fixes an immediate bug with subst-to-orig conversion of
parameter functions that I'm surprised isn't otherwise tested.
More importantly, it preserves valuable information that should
let us handle a much wider variety of variant representations
that aren't necessarily expressed in the AbstractionPattern.
Modifies SILGen and the `Swift._diagnoseUnexpectedNilOptional` call to print a slightly different message for force unwraps which were implicitly inserted by the compiler for IUOs. The message is chosen based on the presence of certain flags in the `ForceValueExpr`, not on the type of the value being unwrapped.
conversions that reverse an implicit conversion done to align
foreign declarations with their imported types.
For example, consider an Objective-C method that returns an NSString*:
- (nonnull NSString*) foo;
This will be imported into Swift as a method returning a String:
func foo() -> String
A call to this method will implicitly convert the result to String
behind the scenes. If the user then casts the result back to NSString*,
that would normally be compiled as an additional conversion. The
compiler cannot simply eliminate the conversion because that is not
necessarily semantically equivalent.
This peephole recognizes as-casts that immediately reverse a bridging
conversion as a special case and gives them special power to eliminate
both conversions. For example, 'foo() as NSString' will simply return
the original return value. In addition to call results, this also
applies to call arguments, property accesses, and subscript accesses.
ground work for the syntactic bridging peephole.
- Pass source and dest formal types to the bridging routines in addition
to the dest lowered type. The dest lowered type is still necessary
in order to handle non-standard abstraction patterns for the dest type.
- Change bridging abstraction patterns to store bridged formal types
instead of the formal type.
- Improve how SIL type lowering deals with import-as-member patterns.
- Fix some AST bugs where inadequate information was being stored in
various expressions.
- Introduce the idea of a converting SGFContext and use it to regularize
the existing id-as-Any conversion peephole.
- Improve various places in SILGen to emit directly into contexts.