Don't bind references to storage to use (new ABI) coroutine accessors
unless they're guaranteed to be available. For example, when building
against a resilient module that has coroutine accessors, they can only
be used if the deployment target is >= the version of Swift that
includes the feature.
rdar://148783895
To ensure that dependent values have a persistent-enough memory representation
to point into, when an immutable binding is referenced as an addressable
argument to a call, have SILGen retroactively emit a stack allocation and
materialization that covers the binding's scope.
To ensure that dependent values have a persistent-enough memory representation
to point into, when an immutable binding is referenced as an addressable
argument to a call, have SILGen retroactively emit a stack allocation and
materialization that covers the binding's scope.
Introduce an `unsafe` expression akin to `try` and `await` that notes
that there are unsafe constructs in the expression to the right-hand
side. Extend the effects checker to also check for unsafety along with
throwing and async operations. This will result in diagnostics like
the following:
10 | func sum() -> Int {
11 | withUnsafeBufferPointer { buffer in
12 | let value = buffer[0]
| | `- note: reference to unsafe subscript 'subscript(_:)'
| |- warning: expression uses unsafe constructs but is not marked with 'unsafe'
| `- note: reference to parameter 'buffer' involves unsafe type 'UnsafeBufferPointer<Int>'
13 | tryWithP(X())
14 | return fastAdd(buffer.baseAddress, buffer.count)
These will come with a Fix-It that inserts `unsafe` into the proper
place. There's also a warning that appears when `unsafe` doesn't cover
any unsafe code, making it easier to clean up extraneous `unsafe`.
This approach requires that `@unsafe` be present on any declaration
that involves unsafe constructs within its signature. Outside of the
signature, the `unsafe` expression is used to identify unsafe code.
When a protocol which has a read (or modify) requirement is built with
the CoroutineAccessors feature, it gains a read2 (or modify2,
respectively) requirement. For this to be compatible with binaries
built without the feature, a default implementation for these new
requirements must be provided. Cause these new accessor requirements to
have default implementations by returning `true` from
`doesAccessorHaveBody` when the context is a `ProtocolDecl` and the
relevant availability check passes.
It should be impossible to reach an unexpected case statically while using
noncopyable enums, and the intrinsic has not been updated to remove its
`Copyable` requirement. Emit a plain trap in cases where this code emission
path might still occur, such as when a redundant but incomplete set of case
patterns follow a wildcard pattern. Fixes rdar://130037881.
Although I don't plan to bring over new assertions wholesale
into the current qualification branch, it's entirely possible
that various minor changes in main will use the new assertions;
having this basic support in the release branch will simplify that.
(This is why I'm adding the includes as a separate pass from
rewriting the individual assertions)
This isn't fully implemented yet so it would crash eventually, so instead of
letting the compiler crash put up a proper diagnostic indicating this isn't
yet implemented. rdar://129034189
To avoid breaking early adopters of this feature, accept attempts to `return`
a `let` binding in a noncopyable `switch` when it would be treated as a
borrow normally, with a warning that this behavior will change soon.
rdar://126775241
It works well enough now that it should be an acceptable replacement for both
borrowing and consuming switches that works in more correct situations than the
previous implementation. This does however expose a few known issues that I'll
try to fix in follow ups:
- overconsumes cause verifier errors instead of raising diagnostics (rdar://125381446)
- cases with multiple pattern labels aren't yet supported (rdar://125188955)
- copyable types with the `borrowing` or `consuming` modifiers should probably use
noncopyable pattern matching.
The `BorrowingSwitch` flag is still necessary to enable the surface-level syntax
changes (switches without `consume` and the `_borrowing` modifier, for instance).
If an expression refers to noncopyable storage, then default to performing
a borrowing switch, where `let` bindings in patterns borrow out of the
matched value. If an expression refers to a temporary value or explicitly
uses the `consume` keyword, then perform a consuming switch, where
`let` bindings take ownership of corresponding parts of the matched value.
Allow `_borrowing` to still be used to explicitly bind a pattern variable
as a borrow, with no-implicit-copy semantics for copyable values.
For address-only types, a temporary was emitted with the same debug variable
and same scope as the instruction it is moved to after entering a shared case,
but it would have a different type, which would create a conflict.
The better way to fix this would probably to use a different scope for both,
but the variable is moved immediately anyway.
Suppose you have an exhaustive switch statement which matches all the cases of
a Swift enum defined in a different module named `External`:
```
import External
var e: External.SomeEnum = //...
switch e {
case .a: break
}
```
If `External` is compiled with library evolution and `SomeEnum` is not frozen,
then the compiler will warn:
```
warning: switch covers known cases, but 'SomeEnum' may have additional unknown values
```
You add an `@unknown default` to the switch to resolve this warning. Now
suppose in another build configuration, `External` is built _without_ library
evolution. The compiler will complain about the unreachability of the default
case:
```
warning: Default will never be executed
```
These contradictory compiler diagnostics encourage the developer to change the
code in a way that will cause a diagnostic in the other configuration.
Developers should have the tools to address all warning diagnostics in a
reasonable fashion and this is a case where the compiler makes that especially
difficult. Given that writing `@unknown default` instead of `default` is a very
intentional action that would be the result of addressing the library evolution
configuration, it seems reasonable to suppress the `Default will never be
executed` diagnostic.
For years, optimizer engineers have been hitting a common bug caused by passes
assuming all SILValues have a parent function only to be surprised by SILUndef.
Generally we see SILUndef not that often so we see this come up later in
testing. This patch eliminates that problem by making SILUndef uniqued at the
function level instead of the module level. This ensures that it makes sense for
SILUndef to have a parent function, eliminating this possibility since we can
define an API to get its parent function.
rdar://123484595
We want to preserve the borrow scope during switch dispatch so that move-only
checking doesn't try to analyze destructures or consumes out of it. SILGen
should mark anywhere that's a potential possibility with its own marker so that
it gets borrow checked independently.
This prevents the move-only checker from trying to analyze the bindings
as partial consumptions, which ought to be unnecessary since SILGen
will always fully consume the subject as part of forming the bindings.
Fill in a missing path for destructuring loadable elements from
address-only tuples in a borrowing context. Enclose projections in their
own separate accesses so that they are analyzed independently by the
move checker.
Relax some existing pattern matches and add some unhandled instructions to the
walkers so that borrowing switches over address-only enums are properly analyzed
for incorrect consumption. Add a `[strict]` flag to `mark_unresolved_move_only_value`
to indicate a borrow access that should remain a borrow access even if the subject
is later stack-promoted from a box.
A `let` binding of a copyable subpattern can create an independent variable
which should be copyable and consumable without affecting a borrowed
move-only base. In the same way that `borrowing` parameters are
no-implicit-copy, though, explicitly `_borrowing` subpatterns of
copyable type should be no-implicit-copy as well.
We don't want the dispatch phase of a pattern match to invalidate the subject,
because we don't define the order in which patterns are evaluated, and if a
particular match attempt fails, we need to still have an intact subject value
on hand to try a potentially arbitrary other pattern against it. For
noncopyable types, this means we have to always emit the match phase as a
borrow, including the variable bindings for a guard expression if any.
For a consuming pattern match, end the borrow scope and reproject the variable
bindings by using consuming destructuring operations on the subject in the
match block.
For now, this new code path only handles single-case-label-per-block switches
without fallthroughs.
Even if the final pattern ends up consuming the value, the match itself
must be nondestructive, because any match condition could fail and cause
us to have to go back to the original aggregate. For copyable values,
we can always copy our way out of consuming operations, but we don't
have that luxury for noncopyable types, so the entire match operation
has to be done as a borrow.
For address-only enums, this requires codifying part of our tag layout
algorithm in SIL, namely that an address-only enum will never use
spare bits or other overlapping storage for the enum tag. This allows
us to assume that `unchecked_take_enum_data_addr` is safely non-side-
effecting and match an address-only noncopyable enum as a borrow.
I put TODOs to remove defensive copies from various parts of our
copyable enum codegen, as well as to have the instruction report
its memory behavior as `None` when the projection is nondestructive,
but this disturbs SILGen for existing code in ways SIL passes aren't
yet ready for, so I'll leave those as is for now.
This patch is enough to get simple examples of noncopyable enum switches
to SILGen correctly. Additional work is necessary to stage in the binding
step of the pattern match; for a consuming switch, we'll need to end
the borrow(s) and then reproject the matched components so we can
consume them moving them into the owned bindings. The move-only checker
also needs to be updated because it currently always tries to convert
a switch into a consuming operation.
The logic here previously worked by computing the
exit count by taking the parent count and
subtracting any control flow that jumped out of the
clauses. With `try` handling fixed, this no longer
works correctly, since a `try` shouldn't be
subtracted if the error is caught be one of the
catches, as that's not actually leaving the
statement. We could write the logic to determine
where a `try` is jumping to, but the logic here is
already pretty brittle, relying on being sprinkled
in various different places.
For now, let's take the more straightforward
approach and handle do-catches the same way we
handle switches, we initialize the exit counter to
0, and add on each exit count of each branch. This
lets us re-use the existing CaseStmt handling
logic. This doesn't necessarily produce the most
optimal counter expressions, but I want to replace
this all with a SILOptimizer pass anyway, which
will be able to much more easily compute optimal
counter expressions.
rdar://100470244
This is a futile attempt to discourage future use of getType() by
giving it a "scary" name.
We want people to use getInterfaceType() like with the other decl kinds.
Reformatting everything now that we have `llvm` namespaces. I've
separated this from the main commit to help manage merge-conflicts and
for making it a bit easier to read the mega-patch.
This is phase-1 of switching from llvm::Optional to std::optional in the
next rebranch. llvm::Optional was removed from upstream LLVM, so we need
to migrate off rather soon. On Darwin, std::optional, and llvm::Optional
have the same layout, so we don't need to be as concerned about ABI
beyond the name mangling. `llvm::Optional` is only returned from one
function in
```
getStandardTypeSubst(StringRef TypeName,
bool allowConcurrencyManglings);
```
It's the return value, so it should not impact the mangling of the
function, and the layout is the same as `std::optional`, so it should be
mostly okay. This function doesn't appear to have users, and the ABI was
already broken 2 years ago for concurrency and no one seemed to notice
so this should be "okay".
I'm doing the migration incrementally so that folks working on main can
cherry-pick back to the release/5.9 branch. Once 5.9 is done and locked
away, then we can go through and finish the replacement. Since `None`
and `Optional` show up in contexts where they are not `llvm::None` and
`llvm::Optional`, I'm preparing the work now by going through and
removing the namespace unwrapping and making the `llvm` namespace
explicit. This should make it fairly mechanical to go through and
replace llvm::Optional with std::optional, and llvm::None with
std::nullopt. It's also a change that can be brought onto the
release/5.9 with minimal impact. This should be an NFC change.