The goal of doing this is to reduce the amount of boilerplate and repeated code w.r.t. Continuation. Having just added `resume()` in four places, I got the sense that there was a lot of common code that was being duplicated. I removed the Throwing variants of these types (they can be expressed as Continuation<T, E:Error> instead of ThrowingContinuation<E>) and I broke out a significant amount of common code between CheckedContinuation and UnsafeContinuation into an implementation-only protocol to avoid repeating it. D.R.Y.
This change resolves rdar://74154769.
The bridging code handles optional wrapping and unwrapping, but in cases where a nullable completion
callback argument did not need bridging, it would get short circuited out of the bridging code, and
did not get unwrapped. Fixes rdar://73798726
If a completion handler takes an error argument, then the non-error arguments are bridged and forwarded to
the continuation only on the happy path. Make sure we forward a copy so the retain level of the success values
remains balanced across both branches. Fixes rdar://72604599.
- `Mangle::ASTMangler::mangleAutoDiffDerivativeFunction()` and `Mangle::ASTMangler::mangleAutoDiffLinearMap()` accept original function declarations and return a mangled name for a derivative function or linear map. This is called during SILGen and TBDGen.
- `Mangle::DifferentiationMangler` handles differentiation function mangling in the differentiation transform. This part is necessary because we need to perform demangling on the original function and remangle it as part of a differentiation function mangling tree in order to get the correct substitutions in the mangled derivative generic signature.
A mangled differentiation function name includes:
- The original function.
- The differentiation function kind.
- The parameter indices for differentiation.
- The result indices for differentiation.
- The derivative generic signature.
To manage code size in user binaries, we want to be able to implement common completion handler signatures in
the Swift runtime once. Using a different mangling for these lets us add new ones without clobbering symbols in
existing binaries.
Immediately before invoking the ObjC API, get the current continuation, capture it into a block to
pass as the completion handler, and then await the continuation, whose resume/error successors
serve as the semantic return/throw result of the call. This should complete the caller-side part
of SILGen; the completion handler block implementation is however still only a stub.
When lowering the SILConstantInfo for a closure implementation type with captures, we are more conservative about
substituting opaque types in the capture, since the underlying types may only be available in the local context. This means
the SILConstantInfo type may not in fact be exactly what you get from `SILFunction::getFunctionTypeInContext` referencing
the implementation function from its originating context, since those opaque types will be substituted in the local context.
Fixes SR-13480 | rdar://problem/68159831.
`DifferentiableFunctionInst` now stores result indices.
`SILAutoDiffIndices` now stores result indices instead of a source index.
`@differentiable` SIL function types may now have multiple differentiability
result indices and `@noDerivative` resutls.
`@differentiable` AST function types do not have `@noDerivative` results (yet),
so this functionality is not exposed to users.
Resolves TF-689 and TF-1256.
Infrastructural support for TF-983: supporting differentiation of `apply`
instructions with multiple active semantic results.
Enum element constructors are used when an enum element satisfies
a protocol requirement. Instead of emitting them as part of
emitGlobalFunctionRef(), let's sink it down to getFunction() where
we do all other on-demand function body emission.
Generate `differentiable_function` and `differentiable_function_extract` in
derivative witness table/vtable thunks.
`differentiation_function` is later canonicalized by the differentiation
transform.
Add SIL FileCheck tests.
`@differentiable` attribute on protocol requirements and non-final class
members now produces derivative function entries in witness tables and vtables.
This enables `witness_method` and `class_method` differentiation.
Existing type-checking rules:
- Witness declarations of `@differentiable` protocol requirements must have a
`@differentiable` attribute with the same configuration (or a configuration
with superset parameter indices).
- Witness table derivative function entries are SILGen'd for `@differentiable`
witness declarations.
- Class vtable derivative function entries are SILGen'd for non-final
`@differentiable` class members.
- These derivative entries can be overridden or inherited, just like other
vtable entries.
Resolves TF-1212.
Now that CSApply transforms partial applications into closures,
we never see AST with partially-applied method calls. So all the
machinery for emitting curry thunks is now gone.
This fixes an immediate bug with subst-to-orig conversion of
parameter functions that I'm surprised isn't otherwise tested.
More importantly, it preserves valuable information that should
let us handle a much wider variety of variant representations
that aren't necessarily expressed in the AbstractionPattern.
ProtocolConformanceRef already has an invalid state. Drop all of the
uses of Optional<ProtocolConformanceRef> and just use
ProtocolConformanceRef::forInvalid() to represent it. Mechanically
translate all of the callers and callsites to use this new
representation.
https://forums.swift.org/t/improving-the-representation-of-polymorphic-interfaces-in-sil-with-substituted-function-types/29711
This prepares SIL to be able to more accurately preserve the calling convention of
polymorphic generic interfaces by letting the type system represent "substituted function types".
We add a couple of fields to SILFunctionType to support this:
- A substitution map, accessed by `getSubstitutions()`, which maps the generic signature
of the function to its concrete implementation. This will allow, for instance, a protocol
witness for a requirement of type `<Self: P> (Self, ...) -> ...` for a concrete conforming
type `Foo` to express its type as `<Self: P> (Self, ...) -> ... for <Foo>`, preserving the relation
to the protocol interface without relying on the pile of hacks that is the `witness_method`
protocol.
- A bool for whether the generic signature of the function is "implied" by the substitutions.
If true, the generic signature isn't really part of the calling convention of the function.
This will allow closure types to distinguish a closure being passed to a generic function, like
`<T, U> in (*T, *U) -> T for <Int, String>`, from the concrete type `(*Int, *String) -> Int`,
which will make it easier for us to differentiate the representation of those as types, for
instance by giving them different pointer authentication discriminators to harden arm64e
code.
This patch is currently NFC, it just introduces the new APIs and takes a first pass at updating
code to use them. Much more work will need to be done once we start exercising these new
fields.
This does bifurcate some existing APIs:
- SILFunctionType now has two accessors to get its generic signature.
`getSubstGenericSignature` gets the generic signature that is used to apply its
substitution map, if any. `getInvocationGenericSignature` gets the generic signature
used to invoke the function at apply sites. These differ if the generic signature is
implied.
- SILParameterInfo and SILResultInfo values carry the unsubstituted types of the parameters
and results of the function. They now have two APIs to get that type. `getInterfaceType`
returns the unsubstituted type of the generic interface, and
`getArgumentType`/`getReturnValueType` produce the substituted type that is used at
apply sites.
Unfortuantely this commit is bigger than I would like but I couldn't think
of any reasonable ways to split it up.
The general idea here is that capture computation is now done for a
SILDeclRef and not an AnyFunctionRef. This allows SIL to represent the
captures of a default argument generator.
Most of AST, Parse, and Sema deal with FileUnits regularly, but SIL
and IRGen certainly don't. Split FileUnit out into its own header to
cut down on recompilation times when something changes.
No functionality change.
This was partially implemented but the check looked at the lowered
types and not the AST types, and DynamicSelfType is erased at the
top level of a lowered type.
Also use the new mangling for reabstraction thunks with self, to
ensure we don't emit the same symbol with two different lowered
types.
Fixes <https://bugs.swift.org/browse/SR-10309>, <rdar://problem/49703441>.
The ownership kind is Any for trivial types, or Owned otherwise, but
whether a type is trivial or not will soon depend on the resilience
expansion.
This means that a SILModule now uniques two SILUndefs per type instead
of one, and serialization uses two distinct sentinel IDs for this
purpose as well.
For now, the resilience expansion is not actually used here, so this
change is NFC, other than changing the module format.
There are instances of currying that require full reabstraction,
such as when partially-applying a concrete override of a generic
class method.
Fixes rdar://45671537 and SR-4425.
Dynamic replacements are currently written in extensions as
extension ExtendedType {
@_dynamicReplacement(for: replacedFun())
func replacement() { }
}
The runtime implementation allows an implementation in the future where
dynamic replacements are gather in a scope and can be dynamically
enabled and disabled.
For example:
dynamic_extension_scope CollectionOfReplacements {
extension ExtentedType {
func replacedFun() {}
}
extension ExtentedType2 {
func replacedFun() {}
}
}
CollectionOfReplacements.enable()
CollectionOfReplacements.disable()
- getAsDeclOrDeclExtensionContext -> getAsDecl
This is basically the same as a dyn_cast, so it should use a 'getAs'
name like TypeBase does.
- getAsNominalTypeOrNominalTypeExtensionContext -> getSelfNominalTypeDecl
- getAsClassOrClassExtensionContext -> getSelfClassDecl
- getAsEnumOrEnumExtensionContext -> getSelfEnumDecl
- getAsStructOrStructExtensionContext -> getSelfStructDecl
- getAsProtocolOrProtocolExtensionContext -> getSelfProtocolDecl
- getAsTypeOrTypeExtensionContext -> getSelfTypeDecl (private)
These do /not/ return some form of 'this'; instead, they get the
extended types when 'this' is an extension. They started off life with
'is' names, which makes sense, but changed to this at some point. The
names I went with match up with getSelfInterfaceType and
getSelfTypeInContext, even though strictly speaking they're closer to
what getDeclaredInterfaceType does. But it didn't seem right to claim
that an extension "declares" the ClassDecl here.
- getAsProtocolExtensionContext -> getExtendedProtocolDecl
Like the above, this didn't return the ExtensionDecl; it returned its
extended type.
This entire commit is a mechanical change: find-and-replace, followed
by manual reformatted but no code changes.
This initial implementation just delegates from SILGenFunctionBuilder to
SILFunctionBuilder. I was going to start transforming verbose uses of
SILFunctionBuilder into higher level APIs on SILGenFunctionBuilder, but I have
run out of time.
This is a good incremental step forward that will let me hide the constructor of
SILFunctionBuilder after I update the optimizer and thus ensure that
SILFunctionBuilder is only used through appropriate composition APIs.
rdar://42301529
This commit does not modify those APIs or their usage. It just:
1. Moves the APIs onto SILFunctionBuilder and makes SILFunctionBuilder a friend
of SILModule.
2. Hides the APIs on SILModule so all users need to use SILFunctionBuilder to
create/destroy functions.
I am doing this in order to allow for adding/removing function notifications to
be enforced via the type system in the SILOptimizer. In the process of finishing
off CallerAnalysis for FSO, I discovered that we were not doing this everywhere
we need to. After considering various other options such as:
1. Verifying after all passes that the notifications were sent correctly and
asserting. Turned out to be expensive.
2. Putting a callback in SILModule. This would add an unnecessary virtual call.
I realized that by using a builder we can:
1. Enforce that users of SILFunctionBuilder can only construct composed function
builders by making the composed function builder's friends of
SILFunctionBuilder (notice I did not use the word subclass, I am talking
about a pure composition).
2. Refactor a huge amount of code in SILOpt/SILGen that involve function
creation onto a SILGenFunctionBuilder/SILOptFunctionBuilder struct. Many of
the SILFunction creation code in question are straight up copies of each
other with small variations. A builder would be a great way to simplify that
code.
3. Reduce the size of SILModule.cpp by 25% from ~30k -> ~23k making the whole
file easier to read.
NOTE: In this commit, I do not hide the constructor of SILFunctionBuilder since
I have not created the derived builder structs yet. Once I have created those in
a subsequent commit, I will hide that constructor.
rdar://42301529
The storage kind has been replaced with three separate "impl kinds",
one for each of the basic access kinds (read, write, and read/write).
This makes it far easier to mix-and-match implementations of different
accessors, as well as subtleties like implementing both a setter
and an independent read/write operation.
AccessStrategy has become a bit more explicit about how exactly the
access should be implemented. For example, the accessor-based kinds
now carry the exact accessor intended to be used. Also, I've shifted
responsibilities slightly between AccessStrategy and AccessSemantics
so that AccessSemantics::Ordinary can be used except in the sorts of
semantic-bypasses that accessor synthesis wants. This requires
knowing the correct DC of the access when computing the access strategy;
the upshot is that SILGenFunction now needs a DC.
Accessor synthesis has been reworked so that only the declarations are
built immediately; body synthesis can be safely delayed out of the main
decl-checking path. This caused a large number of ramifications,
especially for lazy properties, and greatly inflated the size of this
patch. That is... really regrettable. The impetus for changing this
was necessity: I needed to rework accessor synthesis to end its reliance
on distinctions like Stored vs. StoredWithTrivialAccessors, and those
fixes were exposing serious re-entrancy problems, and fixing that... well.
Breaking the fixes apart at this point would be a serious endeavor.
NFC for now, but by not looking at the FunctionType of the AST Decl,
we no longer pass an InOutType to type lowering here, which won't be
supported soon.
They "may be serialized", not "must be serialized". Small compile-time
win (and helps decrease the frequency of SIL bugs around mixing Swift
versions).
Otherwise when we have to copy an @in_guaranteed argument to pass into a
partial_apply, the alloc_stack associated with the copy is never cleaned up.
=><=.
AFAIKT this can not happen with the +1 runtime.
rdar://34222540
This method was not distinguishing in between in_guaranteed and in
parameters. This would cause the curry thunk where this is used to not copy
in_guaranteed parameters before passing in the parameter to the
partial_apply. This can not affect +1 code since the curry thunk will always
have self at +1.
I also refactored code in:
1. SILGenPoly.
2. SILGenProlog.
3. SILGenConstructor.
to use this function instead of their own reimplementations of the same thing.
This should be NFC for +1 code and is tested by test updates when +0 is enabled.
rdar://34222540
There are a bunch of methods in this area that do not use ManagedValues, but
that should. This is another step towards unwinding the hairball.
rdar://34222540
This enables curry thunks to handle properly +0 arguments that are captured by a
partial apply.
I am pretty sure that this can not happen without +0. It occurs relatively
frequently in the SILGen tests when you run with ownership enabled.
rdar://34222540
This is a refactor that we want in general and allows me to use
ensurePlusOne(...) to ensure we retain all values we put into the partial
apply.
rdar://34222540