A binary module with PackageCMO includes instructions that are typically disallowed in resilient mode. If the client module belongs to the same package, these instructions can be deserialized and inlined during optimization. However, this must be prevented for clients outside the package, as such instructions are invalid beyond the package domain and could trigger an assertion failure.
Resolves rdar://135345358
The thunk's parameter needs the @in_guaranteed convention if it's a
const reference parameter. However, that convention wasn't being used
because clang importer was removing the const reference from the
type and SILGen was computing the type of the parameter based on the
type without const reference.
This commit fixes the bug by passing the clang function type to
SILDeclRef so that it can be used to compute the correct thunk type.
This fixes a crash when a closure is passed to a C function taking a
pointer to a function that has a const reference struct parameter.
This recommits e074426 with fixes to
serialization/deserialization of function types. The fixes prevent clang
types of functions from being dropped during serialization.
rdar://131321096
For now this will only be used for HopToMainActorIfNeeded thunks. I am creating
this now since in the past there has only been one option for creating
thunks... to create the thunk in SILGen using SILGenThunk. This code is hard to
test and there is a lot of it. By using an instruction here we get a few benefits:
1. We decouple SILGen from needing to generate new kinds of thunks. This means
that SILGenThunk does not need to expand to handle more thunks.
2. All thunks implemented via ThunkInst will be easy to test in a decoupled way
with SIL tests.
3. Even though this stabilizes the patient, we still have many thunks in SILGen
and various parts of the compiler. Over time, we can swap to this model,
allowing us to hopefully eventually delete SILGenThunk.
In an explicit build LLDB needs to be able import the unmodified .pcms, so
having the exact same flags matters there, and there is no risk of a
recompilation failure, because nothing is recompiled.
rdar://136759808
Use IncludeTreeFileList instead of full feature CASFS for swift
dependency filesystem. This allows smaller CAS based VFS that is smaller
and faster. This is enabled by the CAS enabled compilation does not
need to iterate file system.
rdar://136787368
Add function to handle all macro dependencies kinds in the scanner,
including taking care of the macro definitions in the module interface
for its client to use. The change involves:
* Encode the macro definition inside the binary module
* Resolve macro modules in the dependencies scanners, including those
declared inside the dependency modules.
* Propagate the macro defined from the direct dependencies to track
all the potentially available modules inside a module compilation.
OptionBlocks has missing block record for some of the record types. Add
the missing record types into block info block and order the block
record in the same order as the declaration so it is easier to check for
which kind is missing.
ModuleDecl kept track of all of the source files in the module so that it
could find the source file containing a given location, which relied on
a sorted array all of these source files. SourceManager has its own
similar data structure for a similar query mapping the locations to
buffer IDs.
Replace ModuleDecl's dats structure with a use of the SourceManager's version
with the mapping from buffer IDs to source files.
The generality of the `AvailabilityContext` name made it seem like it
encapsulates more than it does. Really it just augments `VersionRange` with
additional set algebra operations that are useful for availability
computations. The `AvailabilityContext` name should be reserved for something
pulls together more than just a single version.
When '.package.swiftinterface' loading ('-experimental-package-interface-load') is disabled and when '-scanner-module-validation' is disabled, the scanner defaults to locating the non-package textual interface and may specify its adjacent binary module as a valid candidate binary module to use. If said candidate is up-to-date and ends up getting used, and belongs to the same package as the loading Swift source, then the source compilation may attempt to load its package-only dependencies. Since the scanner only parsed the non-package textual interface, those dependencies are not located and specified as inputs to compilation. This change causes the scanner, in such cases, to also lookup package-only dependencies in adjacent binary Swift modules of textual Swift module dependencies, if such dependency belongs to the same package as the source target being scanned.
Resolves rdar://135215789
This assert was correctly catching the fact that `-target-variant` is not being
normalized at the same time as `-target` when building arm64e modules from
swiftinterface. That should be fixed, but at the moment it isn't causing any
concrete harm and the assertion fails when building against the SDKs included
with the latest Xcode 16 betas.
Resolves rdar://133020098.