Moved all the threading code to one place. Added explicit support for
Darwin, Linux, Pthreads, C11 threads and Win32 threads, including new
implementations of Once for Linux, Pthreads, C11 and Win32.
rdar://90776105
SWIFT_STDLIB_SINGLE_THREADED_RUNTIME is too much of a blunt instrument here.
It covers both the Concurrency runtime and the rest of the runtime, but we'd
like to be able to have e.g. a single-threaded Concurrency runtime while
the rest of the runtime is still thread safe (for instance).
So: rename it to SWIFT_STDLIB_SINGLE_THREADED_CONCURRENCY and make it just
control the Concurrency runtime, then add a SWIFT_STDLIB_THREADING_PACKAGE
setting at the CMake/build-script level, which defines
SWIFT_STDLIB_THREADING_xxx where xxx depends on the chosen threading package.
This is especially useful on systems where there may be a choice of threading
package that you could use.
rdar://90776105
Moved all the threading code to one place. Added explicit support for
Darwin, Linux, Pthreads, C11 threads and Win32 threads, including new
implementations of Once for Linux, Pthreads, C11 and Win32.
rdar://90776105
SWIFT_STDLIB_SINGLE_THREADED_RUNTIME is too much of a blunt instrument here.
It covers both the Concurrency runtime and the rest of the runtime, but we'd
like to be able to have e.g. a single-threaded Concurrency runtime while
the rest of the runtime is still thread safe (for instance).
So: rename it to SWIFT_STDLIB_SINGLE_THREADED_CONCURRENCY and make it just
control the Concurrency runtime, then add a SWIFT_STDLIB_THREADING_PACKAGE
setting at the CMake/build-script level, which defines
SWIFT_STDLIB_THREADING_xxx where xxx depends on the chosen threading package.
This is especially useful on systems where there may be a choice of threading
package that you could use.
rdar://90776105
When SWIFT_COMPACT_ABSOLUTE_FUNCTION_POINTER is enabled, relative direct
pointers whose pointees are functions will be turned into absolute
pointer at compile-time.
Most of the stdlibs at the SIL level are the same so by not verifying them all,
we aren't losing that much coverage. This gives us back some of the coverage we
lost when we disabled -sil-verify-all everywhere without causing us to have the
huge slow down when building multiple stdlibs.
This will let us save some build time without losing the coverage of
sil-verify-all everywhere since much of the code in all of the stdlibs are the
same.
These modules are part of the experimental declarative string processing feature. If accepted to the Standard Library, _StringProcessing will be available via implicit import just like _Concurrency, though _MatchingEngine will still be hidden as an implementation detail.
`_MatchingEngine` will contain the general-purpose pattern matching engine ISA, bytecode, and executor. `_StringProcessing` will contain regular expression and pattern matching APIs whose implementation depends on the matching engine..
Also consolidates frontend flag `-enable-experimental-regex` as `-enable-experimental-string-processing`.
Resolves rdar://85478647.
This is for the 'freestanding' build to stop assuming the platform has argc/argv.
- Introduce a new sub-library, libswiftCommandLineSupport.a
- Move stubs/CommandLine.cpp into this library
- Conditionally embed it into libswiftCore
- Conditionally embed it into libswiftPrivateLibcExtras if not in libswiftCore to support testing
- Add SWIFT_STDLIB_HAS_COMMANDLINE CMake (and build-script) flag
Adding build modes for libswift: off, hosttools, bootstrapping, bootstrapping-with-hostlibs
The two bootstrapping modes are new. For details see libswift/README.md
In a back deployment scenario, this will provide a place where one could provide
function implementations that are not available in the relevant stdlib.
This is just setting up for future work and isn't doing anything interesting
beyond wiring it up/making sure that it is wired up correctly with tests.