Swift-defined @objc protocols are registered with the Objective-C runtime
under the Swift 3 mangling scheme; look in the Objective-C runting using
objc_getProtocol() with the appropriate name.
Also, correctly compute the "class bound" bit when forming a protocol
composition metatype. The information isn't in the mangled name when it
can be recovered from the protocols themselves, so look at the protocols.
TypeDecoder's interface with its builders already treated protocols as
a type (due to their being mangled as "protocol composition containing
one type"), and intermixed protocols with superclasses when forming
compositions. This makes for some awkwardness when working with
protocol descriptors, which are very much a distinct entity from a
type.
Separate out the notion of a "protocol declaration" (now represented
by the builder-provided BuiltProtocolDecl type) from "a protocol
composition containing a single type", similarly to the way we handle
nominal type declarations. Teach remote mirrors and remote AST to
handle the new contract.
Introduce a flags parameter to swift_getTupleTypeMetadata(). Add a flag
stating when the "labels" parameter points into nonconstant memory, in
which case we need to make a copy of the string before adding an entry
into the concurrent map.
Since it's not very common to use such ABI endpoints, let's remove
them and use the most general one `swift_getFunctionTypeMetadata`
instead when function parameters have flags attached to them.
Resolves: rdar://problem/36278686
This ABI endpoint is used to retrieve metadata about functions
without parameters. Which is very common use-case and it
makes sense to save some code size for that.
Nominal type descriptors are not always unique, so testing them via pointer
equality is not correct. Introduce an "isEqual()" operation for
nominal type descriptors that performs the appropriate equality check,
using pointer equality when possible, and falling back to string
comparisons of the mangled type name when it is not possible.
Introduce a "nonunique" flag into nominal type descriptors to describe
when they are, in fact, not unique. The only nonunique nominal type
descriptors currently come from Clang-imported types; all
Swift-defined types have unique nominal type descriptors. Use this
flag to make the aforementioned operation efficient in the "unique"
case.
Use the new isEqual() operation for protocol conformance lookup, and
make sure we're caching results based on the known-canonical nominal
type descriptor.
If the nominal type descriptor's resilient superclass flag
is set, the generic parameter offset, vtable start offset
and field offset start offset are all relative to the
start of the class's immedaite members, and not the start
of the class metadata.
Support this by loading the size of the superclass and
adding it to these offsets if the flag is set.
- Create the value witness table as a separate global object instead
of concatenating it to the metadata pattern.
- Always pass the metadata to the runtime and let the runtime handle
instantiating or modifying the value witness table.
- Pass the right layout algorithm version to the runtime; currently
this is always "Swift 5".
- Create a runtime function to instantiate single-case enums.
Among other things, this makes the copying of the VWT, and any
modifications of it, explicit and in the runtime, which is more
future-proof.
We can reduce the uniquing header from 3–4 pointer-sized words down to 1–2 32-bit words + one pointer:
- The initialization function (when present) and name are always emitted into the same binary image, so we can use relative references to shrink these down to 32-bit fields.
- We don't ever simultaneously need the initialization flags and the initialized uniqued pointer. (Keeping the "initialization function" flag bit theoretically lets us turn a "consume" load into a "relaxed" load, but that makes no practical difference on most contemporary architectures.) 12 flag bits Ought To Be Enough For Anyone and lets us reliably tell a valid pointer from a flag set, so overlap the initialization flags with the eventual invasive cache value.
The invasive cache is left inline, since we've decided we're not going to make the rest of type metadata records ever be true-const, so they'll already be sitting on a dirty page. A dynamic linker that was sufficiently Swift-optimized to precalculate the other load-time-initialized entries in metadata could likely precompute the invasive cache value as well.
rdar://problem/22527141
NFC intended. The layout of trailing matter here is getting fairly complex, so it's good to use LLVM's existing library code to keep track of it. We use a fork of llvm's TrailingObjects.h header so that future changes to LLVM don't disturb the ABI of Swift runtime objects that use the template.
Don't emit placeholders for field offsets and vtable entries,
since they were always null. Instead, calculate the final size
of class metadata at runtime using the size of the superclass
metadata and the number of immediate members, and only copy
this prefix from the template to the instantiated metadata,
zero-filling the rest.
For this to work with non-generic resilient classes and
non-generic subclasses of generic classes, we need a new
runtime entry point to relocate non-generic class metadata,
calculating its size at runtime using the same strategy.
When allocating metadata for a generic class we would copy
any prefix matter from the superclass metadata, if the
superclass metadata's address point was greater than our
address point.
While we may use prefix matter for resilient metadata
in the future, I don't believe just copying bytes like
this will prove useful.
Switch most general endpoint to be `flags, parameters, parameterFlags, result`,
instead of opaque `void **`, more specialized ones to use follow argument scheme:
`flags, param0, [flags0], ..., paramN, [flagsN], result` and store parameter/flags
information separately in `FunctionCacheEntry::{Key, Data}` as well.
Currently only single 'inout' flag has been encoded into function
metadata, these changes extend function metadata to support up to
32 flags per parameter.
Switch most general endpoint to be `flags, parameters, parameterFlags, result`,
instead of opaque `void **`, more specialized ones to use follow argument scheme:
`flags, param0, [flags0], ..., paramN, [flagsN], result` and store parameter/flags
information separately in `FunctionCacheEntry::{Key, Data}` as well.
Currently only single 'inout' flag has been encoded into function
metadata, these changes extend function metadata to support up to
32 flags per parameter.
This is a small code size win, and also gives us some abstraction so that future cooperative ObjC compilers/runtimes might be able to interoperate ObjC class objects with Swift type metadata efficiently than they currently are in the fragile Swift runtime.
While I'm here, I also noticed that swift_getObjCClassMetadata was unnecessarily getting exposed in non-ObjC-interop runtime builds, so I fixed that as well.
So far single payload enums were implemented in terms of runtime functions which
internally emitted several calls to value witnesses.
This commit adds value witnesses to get and store the enum tag side stepping the
need for witness calls as this information is statically available in many cases
/// int (*getEnumTagSinglePayload)(const T* enum, UINT_TYPE emptyCases)
/// Given an instance of valid single payload enum with a payload of this
/// witness table's type (e.g Optional<ThisType>) , get the tag of the enum.
/// void (*storeEnumTagSinglePayload)(T* enum, INT_TYPE whichCase,
/// UINT_TYPE emptyCases)
/// Given uninitialized memory for an instance of a single payload enum with a
/// payload of this witness table's type (e.g Optional<ThisType>), store the
/// tag.
A simple 'for element in array' loop in generic code operating on a
ContigousArray of Int is ~25% faster on arm64.
rdar://31408033
This changes layout of the parameter metadata from single tuple record
(in case of materializable type) to N records each corresponding to
invididual function parameter, where functions with no parameters
`() -> Void` get 0 records allocated.
The NTD now references the metadata accessor function for the type, which is a better interface for most things one would want to do with type metadata from a nominal type. The only remaining use in the runtime self really has no requirement to do so. For now, don't disturb the binary layout to prevent breaking downstream clients.