Minimize the generic class metadata template by removing the
class header and base-class members. Add back the set of
information that's really required for instantiation.
Teach swift_allocateGenericClass how to allocate classes without
superclass metadata. Reorder generic initialization to establish
a stronger phase-ordering between allocation (the part that doesn't
really care about the generic arguments) and initialization (the
part that really does care about the generic arguments and therefore
might need to be delayed to handle metadata cycles).
A similar thing needs to happen for resilient class relocation.
@objc protocols don't have witness tables. However, both type metadata
(in the nominal type descriptors) and the runtime code to demangle
type names into metadata weren't acknowledging this. Fix type metadata
emission to not count an "extra argument" for @objc protocol
conformance requirements, and teach the runtime code to properly look
for conformances to @objc protocols (through the Objective-C runtime)
and not record witness tables for them.
This makes resolving mangled names to nominal types in the same module more efficient, and for eventual secrecy improvements, also allows types in the same module to be referenced from mangled typerefs without encoding any source-level name information about them.
`_typeByMangledName` could encounter types which have ownership attributes
associated with them which are not representable by the metadata object
but nevertheless are important, so such ownership information should be
returned along with metadata itself from the call.
When evaluating whether a given type conforms to a protocol, evaluate the
conditional requirements and pass the results to the witness table
accessor function. This provides the ability to query conditional
conformances at runtime, and is the last major part of implementing
SE-0143.
The newly-added unlock/lock dance in the conformance lookup code is a
temporary stub. We have some ideas to do this better.
Fixes rdar://problem/34944655.
Extend the runtime's ability for evaluating generic requirements to
handle same-type requirements, demangling/substituting the name from
the generic requirement metadata.
Extend support for mapping a mangled name -> type metadata to include
support for checking protocol conformance requirements, using the
encoding of generic requirements that is now available within context
descriptors. For example, this allows
_typeByMangledName(mangled-name-of-Set<Int>) to construct proper type
metadata, filling in the Int: Hashable requirement as appropriate.
This new format more efficiently represents existing information, while
more accurately encoding important information about nested generic
contexts with same-type and layout constraints that need to be evaluated
at runtime. It's also designed with an eye to forward- and
backward-compatible expansion for ABI stability with future Swift
versions.
ADT uses report_bad_alloc_error to report an error when it can't allocate
elements for a data structure. The swift runtime uses ADT without linking
against libSupport, so here we provide a stub to make sure we don't fail
to link. Give it `weak` linkage so, in case the `strong` definition of
the function is available, that gets precedence.
Now that all nominal types have nominal type descriptors, directly
search for nominal type descriptors when looking up metadata by
mangled name. This eliminates some bouncing between metadata and
nominal type descriptor when decoding a mangled name.
- Create the value witness table as a separate global object instead
of concatenating it to the metadata pattern.
- Always pass the metadata to the runtime and let the runtime handle
instantiating or modifying the value witness table.
- Pass the right layout algorithm version to the runtime; currently
this is always "Swift 5".
- Create a runtime function to instantiate single-case enums.
Among other things, this makes the copying of the VWT, and any
modifications of it, explicit and in the runtime, which is more
future-proof.
This is a small code size win, and also gives us some abstraction so that future cooperative ObjC compilers/runtimes might be able to interoperate ObjC class objects with Swift type metadata efficiently than they currently are in the fragile Swift runtime.
While I'm here, I also noticed that swift_getObjCClassMetadata was unnecessarily getting exposed in non-ObjC-interop runtime builds, so I fixed that as well.
Previously it was part of swiftBasic.
The demangler library does not depend on llvm (except some header-only utilities like StringRef). Putting it into its own library makes sure that no llvm stuff will be linked into clients which use the demangler library.
This change also contains other refactoring, like moving demangler code into different files. This makes it easier to remove the old demangler from the runtime library when we switch to the new symbol mangling.
Also in this commit: remove some unused API functions from the demangler Context.
fixes rdar://problem/30503344
This makes the demangler about 10 times faster.
It also changes the lifetimes of nodes. Previously nodes were reference-counted.
Now the returned demangle node-tree is owned by the Demangler class and it’s lifetime ends with the lifetime of the Demangler.
Therefore the old (and already deprecated) global functions demangleSymbolAsNode and demangleTypeAsNode are no longer available.
Another change is that the demangling for reflection now only supports the new mangling (which should be no problem because
we are generating only new mangled names for reflection).
The code we use to interface with the platform dynamic linker is turning into a rat's nest of conditionals that's hard to maintain and extend. Since ELF, Mach-O, and PE platforms have pretty fundamentally different dynamic linker interfaces and capabilities, it makes sense to factor that code into a separate file per-platform, instead of trying to conditionalize the logic in-line. This patch factors out a much simpler portable interface for lazily kicking off the protocol conformance and type metadata lookup caches, and factors the guts out into separate MachO, ELF, and Win32 backends. This should also be a much cleaner interface to interface static binary behavior into, assisting #5349.
This reverts commit 893d1dc523.
This looks like a likely culprit that broke tests on the iOS Simulator:
Failing Tests (6):
Swift :: IRGen/class_resilience.swift
Swift :: IRGen/concrete_inherits_generic_base.swift
Swift :: IRGen/enum_resilience.swift
Swift :: IRGen/foreign_types.sil
Swift :: IRGen/nested_types.sil
Swift :: IRGen/struct_resilience.swift
need to be modified by the runtime, and only actually store to them
when that would change anything.
Unfortunately, Linux is considerably better than Darwin at shaking
these bugs out because Darwin will leave global data mutable after
resolving relocations in it.
Be more conservative in terms of masking ISAs. This reduces tight coupling with the objc runtime. This commit adds the required calls to IRGen and the runtime, and a test case to make sure IRGen is correct.
- Add RuntimeTarget template This will allow for converting between
metadata structures for native host and remote target architectures.
- Create InProcess and External templates for stored pointers
Add a few more types to abstract pointer access in the runtime
structures but keep native in-process pointer access the same as that
with a plain old pointer type.
There is now a notion of a "stored pointer", which is just the raw value
of the pointer, and the actual pointer type, which is used for loads.
Decoupling these allows us to fork the behavior when looking at metadata
in an external process, but keep things the same for the in-process
case.
There are two basic "runtime targets" that you can use to work with
metadata:
InProcess: Defines the pointer to be trivially a T* and stored as a
uintptr_t. A Metadata * is exactly as it was before, but defined via
AbstractMetadata<InProcess>.
External: A template that requires a target to specify its pointer size.
ExternalPointer: An opaque pointer in another address space that can't
(and shouldn't) be indirected with operator* or operator->. The memory
reader will fetch the data explicitly.
...and explicitly mark symbols we export, either for use by executables or for runtime-stdlib interaction. Until the stdlib supports resilience we have to allow programs to link to these SPI symbols.
This comes with a fix for a null pointer dereference in _typeByName()
that would pop with foreign classes that do not have a
NominalTypeDescriptor.
Also, I decided to back out part of the change for now, where the
NominalTypeDescriptor references an accessor function instead of a
pattern, since this broke LLDB, which reaches into the pattern to
get the generic cache.
Soon we will split off the generic cache from the pattern, and at
that time we can change the NominalTypeDescriptor to point at the
cache. But for now, let's avoid needless churn in LLDB by keeping
that part of the setup unchanged.
Change conformance records to reference NominalTypeDescriptors instead of
metadata patterns for resilient or generic types.
For a resilient type, we don't know if the metadata is constant or not,
so we can't directly reference either constant metadata or the metadata
template.
Also, whereas previously NominalTypeDescriptors would point to the
metadata pattern, they now point to the metadata accessor function.
This allows the recently-added logic for instantiating concrete types
by name to continue working.
In turn, swift_initClassMetadata_UniversalStrategy() would reach into
the NominalTypeDescriptor to get the pattern out, so that its bump
allocator could be used to allocate ivar tables. Since the pattern is
no longer available this way, we have to pass it in as a parameter.
In the future, we will split off the read-write metadata cache entry
from the pattern; then swift_initClassMetadata_UniversalStrategy() can
just take a pointer to that, since it doesn't actually need anything
else from the pattern.
Since Clang doesn't guarantee alignment for function pointers, I had
to kill the cute trick that packed the NominalTypeKind into the low
bits of the relative pointer to the pattern; instead the kind is now
stored out of line. We could fix this by packing it with some other
field, or keep it this way in case we add new flags later.
Now that generic metadata is instantiated by calling accessor functions,
this change removes the last remaining place that metadata patterns were
referenced from outside the module they were defined in. Now, the layout
of the metadata pattern and the behavior of swift_getGenericMetadata()
is purely an implementation detail of generic metadata accessors.
This patch allows two previously-XFAIL'd tests to pass.