Use the `%target-swift-5.1-abi-triple` substitution to compile the tests for
deployment to the minimum OS versions required for use of _Concurrency APIs,
instead of disabling availability checking.
Async functions are now expected to set ExpectedExecutor in their
prologue (and, generally, immediately hop to it). I updated the
prologue code for a bunch of function emission, most of which was
uninteresting. Top-level code was not returning to the main
executor, which is now fixed; fortunately, we weren't assuming
that we were on the main executor yet.
We had some code that only kicked in when an ExpectedExecutor
wasn't set which made us capture the current executor before
a hop and then return to it later. This code has been removed;
there's no situation in which save-and-return is the semantically
correct thing to do given the possibility of hop optimization.
I suspect it could also have led to crashes if the current
executor is being kept alive only because it's currently running
code. If we ever add async functions that are supposed to inherit
their caller's executor, we should have the caller pass the right
executor down to it.
This is the first half of SE-0338; the second, sendability
enforcement, is much more complicated, and Doug has volunteered
to do it.
Fixes rdar://79284465, as well as some tests that were XFAILed
on Windows.
In https://reviews.llvm.org/D95617 LLVM stopped to emit debug values without a
location as an optimization for inlined functions. Because Swift is emitting
dbg.values(undef) for sizeless variables even at -Onone, we need to make sure
all local variables are preserved even at -Onone.
rdar://82038523
emitShadowCopyIfNeeded has some extra code that was added when function
arguments were moved out of the async context to ensure that they are being
lifetime-extended, and there is also code that generates an incorrect load from
the shadow copy. However, emitShadowCopyIfNeeded is supposed return either an
alloca or the value, and IRGenDebugInfo knows to describe the value in the
alloca already. The load is counterproductive it's only valid until whatever
register it ends up in is clobbered, whereas the alloca is valid throughout the
function.
This patch removes the load and updates the tests accordingly.
rdar://81805727
This patch removes a heuristic to promote all debug intrinsics pointing into
allocas to llvm.dbg.declare() intrinsics and instead more accurate classifies
variables in async contexts by adding the missing cases alloc_box and
alloc_stack cases.
rdar://78977132
Repurpose mangling operator `Y` as an umbrella operator that covers new attributes on function types. Free up operators `J`, `j`, and `k`.
```
async ::= 'Ya' // 'async' annotation on function types
sendable ::= 'Yb' // @Sendable on function types
throws ::= 'K' // 'throws' annotation on function types
differentiable ::= 'Yjf' // @differentiable(_forward) on function type
differentiable ::= 'Yjr' // @differentiable(reverse) on function type
differentiable ::= 'Yjd' // @differentiable on function type
differentiable ::= 'Yjl' // @differentiable(_linear) on function type
```
Resolves rdar://76299796.
Most of the async runtime functions have been changed to not
expect the task and executor to be passed in. When knowing the
task and executor is necessary, there are runtime functions
available to recover them.
The biggest change I had to make to a runtime function signature
was to swift_task_switch, which has been altered to expect to be
passed the context and resumption function instead of requiring
the caller to park the task. This has the pleasant consequence
of allowing the implementation to very quickly turn around when
it recognizes that the current executor is satisfactory. It does
mean that on arm64e we have to sign the continuation function
pointer as an argument and then potentially resign it when
assigning into the task's resume slot.
rdar://70546948