... in distributed_actor_accessor_thunks_32bit.swift
Spotted a typo while skimming through the test so let's fix it. it
should be CHECK-SAME and not CHECK_SAME which would just do nothing
When issuing warnings about an import not needing to be public, we did
not account for the Distributed module MUST be imported when a
distributed actor is declared. This also actually means that a public
distributed actor effectively is a public use of the DistributedActor
protocol
resolves rdar://152129980
Replaces generic `expression is 'async' but is not marked with 'await`
diagnostic with a tailed one for cases where there is an access to an
actor-isolated value outside of its actor without `await` keyword.
This makes the diagnostics for async and sync contexts consistent
and actually identifies a problem instead of simply pointing out
the solution.
Resolves: rdar://151720646
Both the syntax and relative order of the LLVM `nocapture` parameter
attribute changed upstream in 29441e4f5fa5f5c7709f7cf180815ba97f611297.
To reduce conflicts with rebranch, adjust FileCheck patterns to expect
both syntaxes and orders anywhere the presence of the attribute is not
critical to the test. These changes are temporary and will be cleaned
up once rebranch is merged into main.
This attribute was introduced in
7eca38ce76d5d1915f4ab7e665964062c0b37697 (llvm-project).
Match it using a wildcard regex, since it is not relevant to these
tests.
This is intended to reduce future conflicts with rebranch.
We had fixed this bug in https://github.com/swiftlang/swift/pull/79381
but missed to realize the same problem existed for parameters as well.
This corrects the swift_func_getParameterTypeInfo impl, and also removes
the entire "unsafe" method, we no longer use it anywhere.
Resolves rdar://146679254
This corrects how we were dealing with dispatch thunks -- mostly be
removing a lot of special casing we did but doesn't seem necessary and
instead we correct and emit all the necessary information int TBD.
This builds on https://github.com/swiftlang/swift/pull/74935 by further refining how we fixed that issue, and adds more regression tests. It also removes a load of special casing of distributed thunks in library evolution mode, which is great.
Resolves and adds regression test for for rdar://145292018
This is also a more proper fix to the previously resolved but in a not-great-way which caused other issues:
- resolves rdar://128284016
- resolves rdar://128310903
* [Distributed] Accessor must be available cross module in resilient mode
This is an important fix for libraries using @Resolvable in resilient
libraries. Without the fix we're missing an accessor and this will fail
some remote calls which make use of remote calls on resolvable
protocols. This would manifest as missing accessor error thrown by the
executeDistributedTarget function.
resolves rdar://148224780
* Disable test on windows since %env not supported
* [Distributed] Dont emit TBD also for distributed thunks
This resolves pedantic "all" TBD validation issues, i.e. we dont emit
unexpected records anymore - we would before as we only checked for
is_distributed but we also want to skip those for is_distributed_thunk
resolves rdar://128284016
* [Distributed] Accessor must be available cross module in resilient mode
This is an important fix for libraries using @Resolvable in resilient
libraries. Without the fix we're missing an accessor and this will fail
some remote calls which make use of remote calls on resolvable
protocols. This would manifest as missing accessor error thrown by the
executeDistributedTarget function.
resolves rdar://148224780
* Disable test on windows since %env not supported
This issue manifested in crashing when in Xcode one would do the Archive
workflow, and we would be missing the Distributed module types and
proceed to run into a nullpointer when faced with code like this:
```
public class TestViewModel {
public init() {}
public func onReturn() {
print("on return executed!")
}
}
```
where the name matched one of the ad hoc requirements, but we'd get null
for the protocol lookup since this does not import the distributed
module.
resolves rdar://148327936
This is a narrow fix, we are going to work on fixing this properly
and allowing both devirtualization and specialization for distributed
requirement witnesses.
Anything that uses an ad-hoc serialization requirement scheme cannot
be devirtualized because that would result in loss of ad-hoc conformance
in new substitution map.
Resolves: https://github.com/swiftlang/swift/issues/79318
Resolves: rdar://146101172
A protocol conformance can be ill-formed due to isolation mismatches
between witnesses and requirements, or with associated conformances.
Previously, such failures would be emitted as a number of separate
errors (downgraded to warnings in Swift 5), one for each witness and
potentially an extra for associated conformances. The rest was a
potential flood of diagnostics that was hard to sort through.
Collect all of the isolation-related problems for a given conformance
together and produce a single error (downgraded to a warning when
appropriate) that describes the overall issue. That error will have up
to three notes suggesting specific courses of action:
* Isolating the conformance (when the experimental feature is enabled)
* Marking the witnesses as 'nonisolated' where needed
*
The diagnostic also has notes to point out the witnesses/associated
conformances that have isolation problems. There is a new educational
note that also describes these options.
We give the same treatment to missing 'distributed' on witnesses to a
distributed protocol.
When diagnosing an isolation mismatch between a requirement and witness,
we would produce notes on the requirement itself suggesting the addition of
`async`. This is almost never what you want to do, and is often so far
away from the actual conforming type as to be useless. Remove this note,
and the non-function fallback that just points at the requirement, because
they are unhelpful.
This is staging for a rework of the way we deal with conformance-level
actor isolation problems.
PredictableMemoryAccessOptimizations has become unmaintainable as-is.
RedundantLoadElimination does (almost) the same thing as PredictableMemoryAccessOptimizations.
It's not as powerful but good enough because PredictableMemoryAccessOptimizations is actually only needed for promoting integer values for mandatory constant propagation.
And most importantly: RedundantLoadElimination does not insert additional copies which was a big problem in PredictableMemoryAccessOptimizations.
Fixes rdar://142814676
This test was failing in some configurations due to missing availability.
Address it in the same manner as other distributed tests do, by setting
a target triple with Swift 5.7.
Fixes rdar://144229403.
When calling a distributed function for an actor that might not be local,
the call can throw due to the distributed actor system producing an
error. The function might, independently, also throw. When the
function uses typed throws, we incorrectly treated the call is if it
would always throw the error type specified by the function. This
leads to incorrectly accepting invalid code, and compiler crashes in
SILGen.
The change here is to always mark calls to distributed functions
outside the actor as "implicitly throwing", which makes sure that we
treat the call sites as throwing 'any Error'. The actual handling of
the typed throw (from the local function) and the untyped throw (from
the distributed actor system) occurs in thunk generation in SILGen,
and was already handled correctly.
Fixes rdar://144093249, and undoes the ban introduced by rdar://136467528
They don't yield a correct error type as we didn't implement it, so
rather allow it and risk crashes, ban it until we get the time to
implement it.
The real solution is to adjust typed throws error inference to do an
union of the thrown error of the func and the type thrown by the
distributed actor system remote call -- which today always would be (E |
Error) -> Error...
We could add a new associated type to DAS and then we could make it more
proper...
resolves rdar://136467528
This is a crucial fix without which we can crash on some distributed
protocol declarations with @Resolvable. We cannot "just" use a String to
represent the "fake base" of the thunks, and must instead find the
$Target macro generated type and use it as the base of the thunk's
mangling.
Calls are made in such way that record for the protocol requirement:
`$s4main28GreeterDefinedSystemProtocolP5greetSSyYaKFTEHF` points at
`$$s4main29$GreeterDefinedSystemProtocolC5greetSSyYaKFTE` which makes a
dispatch through the _apropriate_ witness table.
And the record for the $witness named e.g.
`$s4main29$GreeterDefinedSystemProtocolC5greetSSyYaKFTEHF` points to
`$s4main28GreeterDefinedSystemProtocolPAA11Distributed01_F9ActorStubRzrlE5greetSSyYaKFTE`
which is an extension method: `distributed thunk (extension in main):main.GreeterDefinedSystemProtocol< where A: Distributed._DistributedActorStub>.greet() async throws -> Swift.String`,
this very specific design allows us to call the "right method" on the
recieving end of a remote call where we do not know the recipient type.
Previously we would not propagate those into the generated distributed
actor, making a lot of generic distributed actor protocols impossible to
express.
We indeed cannot handle protocols WITHOUT primary associated types, but
we certainly can handle them with!
This resolves rdar://139332556
Type annotations for instruction operands are omitted, e.g.
```
%3 = struct $S(%1, %2)
```
Operand types are redundant anyway and were only used for sanity checking in the SIL parser.
But: operand types _are_ printed if the definition of the operand value was not printed yet.
This happens:
* if the block with the definition appears after the block where the operand's instruction is located
* if a block or instruction is printed in isolation, e.g. in a debugger
The old behavior can be restored with `-Xllvm -sil-print-types`.
This option is added to many existing test files which check for operand types in their check-lines.
Find all the usages of `--enable-experimental-feature` or
`--enable-upcoming-feature` in the tests and replace some of the
`REQUIRES: asserts` to use `REQUIRES: swift-feature-Foo` instead, which
should correctly apply to depending on the asserts/noasserts mode of the
toolchain for each feature.
Remove some comments that talked about enabling asserts since they don't
apply anymore (but I might had miss some).
All this was done with an automated script, so some formatting weirdness
might happen, but I hope I fixed most of those.
There might be some tests that were `REQUIRES: asserts` that might run
in `noasserts` toolchains now. This will normally be because their
feature went from experimental to upcoming/base and the tests were not
updated.
Use the `%target-swift-5.X-abi-triple` substitutions to compile the tests for
deployment to the minimum OS versions required for the APIs used in the tests,
instead of disabling availability checking.
Use the `%target-swift-5.1-abi-triple` substitution to compile the tests for
deployment to the minimum OS versions required for use of _Concurrency APIs,
instead of disabling availability checking.