This attribute was introduced in
7eca38ce76d5d1915f4ab7e665964062c0b37697 (llvm-project).
Match it using a wildcard regex, since it is not relevant to these
tests.
This is intended to reduce future conflicts with rebranch.
rdar://149985633
Using at least Int8 here allows LLVM to apply more optimizations, reducing code size, avoiding stack allocations and as a result often eliminating complete stack frames.
This adjusts the runtime function declaration handling to track the
owning module for the well known functions. This allows us to ensure
that we are able to properly identify if the symbol should be imported
or not when building the shared libraries. This will require a
subsequent tweak to allow for checking for static library linkage to
ensure that we do not mark the symbol as DLLImport when doing static
linking.
rdar://105837040
* WIP: Store layout string in type metadata
* WIP: More cases working
* WIP: Layout strings almost working
* Add layout string pointer to struct metadata
* Fetch bytecode layout strings from metadata in runtime
* More efficient bytecode layout
* Add support for interpreted generics in layout strings
* Layout string instantiation, take and more
* Remove duplicate information from layout strings
* Include size of previous object in next objects offset to reduce number of increments at runtime
* Add support for existentials
* Build type layout strings with StructBuilder to support target sizes and metadata pointers
* Add support for resilient types
* Properly cache layout strings in compiler
* Generic resilient types working
* Non-generic resilient types working
* Instantiate resilient type in layout when possible
* Fix a few issues around alignment and signing
* Disable generics, fix static alignment
* Fix MultiPayloadEnum size when no extra tag is necessary
* Fixes after rebase
* Cleanup
* Fix most tests
* Fix objcImplementattion and non-Darwin builds
* Fix BytecodeLayouts on non-Darwin
* Fix Linux build
* Fix sizes in linux tests
* Sign layout string pointers
* Use nullptr instead of debug value
When a specialized usage of a generic enum occurs in the same module
where the enum was defined, directly reference the prespecialized
metadata.
rdar://problem/56994321
This removes it from the AST and largely replaces it with AnyObject
at the SIL and IRGen layers. Some notes:
- Reflection still uses the notion of "unknown object" to mean an
object with unknown refcounting. There's no real reason to make
this different from AnyObject (an existential containing a
single object with unknown refcounting), but this way nothing
changes for clients of Reflection, and it's consistent with how
native objects are represented.
- The value witness table and reflection descriptor for AnyObject
use the mangling "BO" instead of "yXl".
- The demangler and remangler continue to support "BO" because it's
still in use as a type encoding, even if it's not an AST-level
Type anymore.
- Type-based alias analysis for Builtin.UnknownObject was incorrect,
so it's a good thing we weren't using it.
- Same with enum layout. (This one assumed UnknownObject never
referred to an Objective-C tagged pointer. That certainly wasn't how
we were using it!)
This change modifies spare bit masks so that they are arranged in
the byte order of the target platform. It also modifies and
consolidates the code that gathers and scatters bits into enum
values.
All enum-related validation tests are now passing on IBM Z (s390x)
which is a big-endian platform.
LLVM r356789 changed the format of textual IR to print nameless
blocks with labels instead of comments with "; <label>". Adjust Swift
tests to match. I also updated the utils/viewcfg script to match.
Single-payload enum layout unfortunately assumes that constructing the payload case is a no-op, such
as when building Optional.some(x) for a value x. For multi-payload enums, now that we use the unused
spare bits to form extra inhabitants when the enum is in turn wrapped in an Optional or other single-
payload enum, this means we have to zero all of those bits. The spare bits may have been selected from
intra-field or tail padding bytes that are undefined in the underlying payload types. Fixes
rdar://problem/47635801.
This is essentially a long-belated follow-up to Arnold's #12606.
The key observation here is that the enum-tag-single-payload witnesses
are strictly more powerful than the XI witnesses: you can simulate
the XI witnesses by using an extra case count that's <= the XI count.
Of course the result is less efficient than the XI witnesses, but
that's less important than overall code size, and we can work on
fast-paths for that.
The extra inhabitant count is stored in a 32-bit field (always present)
following the ValueWitnessFlags, which now occupy a fixed 32 bits.
This inflates non-XI VWTs on 32-bit targets by a word, but the net effect
on XI VWTs is to shrink them by two words, which is likely to be the
more important change. Also, being able to access the XI count directly
should be a nice win.
Previously we had a single mask for all x86-64 targets which included both the top and bottom bits. This accommodated simulators, which use the top bit, while macOS uses the bottom bit, but reserved one bit more than necessary on each. This change breaks out x86-64 simulators from non-simulators and reserves only the one bit used on each.
rdar://problem/34805348 rdar://problem/29765919
They were, already, but remove the isConstant parameter to
getAddrOfTypeMetadataPattern(), and just assert that its true for
patterns in defineTypeMetadata() instead.
Also, metadata patterns are i8*, not i8**. In fact they don't contain any
absolute pointers at all.
Should be NFC other than the LLVM type change.
And update the existential container's initializeWithTake implementation
in the runtime. After only allowing bitwise takable values in the
inline buffer we can use memcpy to move existential container values.
rdar://31414907
SR-343
This adds the dllstorage annotations on the tests. This first pass gets
most of the IRGen tests passing on Windows (though has dependencies on
other changes). However, this allows for the changes to be merged more
easily as we cannot regress other platforms here.
This regression wasn't caught by normal testing because the emission
pattern substantially changed anyway, breaking tests that were looking for
the field-offset vector, and because normal execution testing doesn't
actually use the field-offset vector and enum payload size fields.
Reflection, which does use these fields, was skating by for common types
because metadata is typically allocated out of freshly zeroed pages and
most such types have only one field.
Also, don't emit a completion function for value metadata with fixed layout.
We really shouldn't have to emit field-offset vectors for fixed-layout types;
the layout should just go in the type descriptor. But for now, this is what
we have to do.
The allocation phase is guaranteed to succeed and just puts enough
of the structure together to make things work.
The completion phase does any component metadata lookups that are
necessary (for the superclass, fields, etc.) and performs layout;
it can fail and require restart.
Next up is to support this in the runtime; then we can start the
process of making metadata accessors actually allow incomplete
metadata to be fetched.
The layout changes to become relative-address based. For this to be
truly immutable (at least on Darwin), things like the RO data patterns
must be moved out of the pattern header. Additionally, compress the
pattern header so that we do not include metadata about patterns that
are not needed for the type.
Value metadata patterns just include the metadata kind and VWT.
The design here is meant to accomodate non-default instantiation
patterns should that become an interesting thing to support in the
future, e.g. for v-table specialization.
This is yet another waypoint on the path towards the final
generic-metadata design. The immediate goal is to make the
pattern a private implementation detail and to give the runtime
more visibility into the allocation and caching of generic types.
* Remove RegisterPreservingCC. It was unused.
* Remove DefaultCC from the runtime. The distinction between C_CC and DefaultCC
was unused and inconsistently applied. Separate C_CC and DefaultCC are
still present in the compiler.
* Remove function pointer indirection from runtime functions except those
that are used by Instruments. The remaining Instruments interface is
expected to change later due to function pointer liability.
* Remove swift_rt_ wrappers. Function pointers are an ABI liability that we
don't want, and there are better ways to get nonlazy binding if we need it.
The fully custom wrappers were only needed for RegisterPreservingCC and
for optimizing the Instruments function pointers.
We no longer need this for anything, so remove it from metadata
altogether. This simplifies logic for emitting type metadata and
makes type metadata smaller.
We still pass the parent metadata pointer to type constructors;
removing that is a separate change.
To make this stick, I've disallowed direct use of that overload of
CreateCall. I've left the Constant overloads available, but eventually
we might want to consider fixing those, too, just to get all of this
code out of the business of manually remembering to pass around
attributes and calling conventions.
The test changes reflect the fact that we weren't really setting
attributes consistently at all, in this case on value witnesses.
This is NFC in intent, but I had to restructure the code to emit more
of the lists "inline", which means I inevitably altered some IRGen
emission patterns in ways that are visible to tests:
- GenClass emits property/ivar/whatever descriptors in a somewhat
different order.
- An ext method type list is now emitted as just an array, not a struct
containing only that array.
- Protocol descriptors are no longer emitted as packed structs.
I was sorely tempted to stop using packed structs for all the metadata
emission, but didn't really want to update that many tests in one go.
Use the generic type lowering algorithm described in
"docs/CallingConvention.rst#physical-lowering" to map from IRGen's explosion
type to the type expected by the ABI.
Change IRGen to use the swift calling convention (swiftcc) for native swift
functions.
Use the 'swiftself' attribute on self parameters and for closures contexts.
Use the 'swifterror' parameter for swift error parameters.
Change functions in the runtime that are called as native swift functions to use
the swift calling convention.
rdar://19978563