Replaces generic `expression is 'async' but is not marked with 'await`
diagnostic with a tailed one for cases where there is an access to an
actor-isolated value outside of its actor without `await` keyword.
This makes the diagnostics for async and sync contexts consistent
and actually identifies a problem instead of simply pointing out
the solution.
Resolves: rdar://151720646
It derives the address of the first element of a vector, i.e. a `Builtin.FixedArray`, from the address of the vector itself.
Addresses of other vector elements can then be derived with `index_addr`.
The IsolatedConformances feature moves to a normal, supported feature.
Remove all of the experimental-feature flags on test cases and such.
The InferIsolatedConformances feature moves to an upcoming feature for
Swift 7. This should become an adoptable feature, adding "nonisolated"
where needed.
When serializing `@available` attributes, if the attribute applies to a custom
domain include enough information to deserialize the reference to that domain.
Resolves rdar://138441265.
Followup fix to #80009. We can still get ambiguities from colliding
decls across modules with the deserialization filtering. Bring back
calling the general lookup shadowing after the filtering. This way it
won't use filtered out decls to hide potential candidates.
rdar://148286345
When performing lazy module serialization, we may be making the first attempt
to turn an `AvailableAttr` into a `SemanticAvailableAttr`. If it turns out the
attribute is invalid at that point, we need to skip it instead of assuming
that the attribute will always be valid there.
Resolves rdar://147539902.
Recover from a raw type hidden behind an internal or implementation-only
import by dropping the whole enum when the raw type is unavailable. This
scenario should happen only when looking at non-public decl for indexing or
debugging, or if dependencies somehow changed and left behind a stale
swiftmodule file.
rdar://147091863
When a Swift function shadows a clang function of the same name, the
assumption was that Swift code would refer only to the Swift one.
However, if the Swift function is `@usableFromInline internal` it can be
called only from the local module and inlined automatically in other
clients. Outside of that module, sources see only the clang function, so
their inlinable code calls only the clang function and ignores the Swift
one. This configuration passed type checking but it could crash the
compiler at inlining the call as the compiler couldn't see the clang
function.
Let's update the deserialization logic to support inlined calls to the
shadowed or the shadower. Typical shadowing is already handled by the
custom deserialization cross-reference filtering logic which looks for
the defining module, scope and whether it's a Swift or clang decl. We
can disable the lookup shadowing logic and rely only on the
deserialization filtering.
rdar://146320871
https://github.com/swiftlang/swift/issues/79801
With the move to explicitly specifying the global actor for an isolated
conformance, we can now have conformances whose isolation differs from
that of the type, including having actors with global-actor-isolated
conformances. Introduce this generalization to match the proposal, and
update/add tests accordingly.
Instead of using the `isolated P` syntax, switch to specifying the
global actor type directly, e.g.,
class MyClass: @MainActor MyProto { ... }
No functionality change at this point
When deserialization a protocol conformance from a binary swiftmodule
file the compiler can encounter inconsistencies caused by stale module
files. Replace the hard crash with a proper error and print the list of
requirements and conformances being compared to stderr for manual
inspection. Recover silently when we can afford to, during indexing or
in LLDB.
Failures in `readNormalProtocolConformanceXRef` are usually caused by a
dependency change without the required rebuild of its dependents.
Display a proper error instead of crashing when encountering such an
issue during normal compilation. Recover silently when we can afford to,
during indexing or in LLDB.
This patch adds support for serialization of debug value instructions. Enablement is currently gated behind the -experimental-serialize-debug-info flag.
Previously, debug_value instructions were lost during serialization. This made it harder to debug cross module inlined functions.
Revisit the optimization that provides a fast path for instances of
`NSError` when erasing the `Error` type in `emitExistentialErasure`. It
generated references to `NSError` when the `Foundation` module was
loaded, no matter how it was imported. This lead to deserialization
failures at reading the swiftmodule when that reference was added to
inlinable code while `Foundation` was not a public dependency.
Fix this crash by limiting the optimization to all non-inlinable code
and only inlinable code from a module with a public dependency on
`Foundation`. This is the similar check we apply to user written
inlinable code, however here we use the module-wide dependency instead
of per file imports.
rdar://142438679
This test appears flaky and it looks to be related to errors on modules
in the SDK from the timing with other failures. The flackiness is likely
from non-determinism in the module cache. Update the test to use a local
cache, which is a good practice for any test importing a module from the
SDK.
rdar://144272339