The existing swift-cmake-options flag overwrites all flags computed by
build-script. Sometimes it is useful to be able to append additional
CMake flags without overwriting the existing flags.
This patch adds `--extra-swift-cmake-options` that adds the specified
flags to the Swift CMake configuration instead of overwriting them.
This also adds a similar `--extra-llvm-cmake-options`, which adds the
new flags to the end, allowing one to replace and overwrite CMake flags
that build-script computed.
Due to the parameter passing mechanisms in build-script-impl, while this
behavior would be useful for Swift, it is not immediately apparent how
one would best implement this at this time.
The ninja builder took a host argument that was unused by the function.
The ninja build failed to pass this argument, resulting in
an execution failure. Removing the argument.
Instead of using `--build-ninja` to decide to build ninja, build it
automatically if a sufficiently new enough version is not available.
Also record the build time taken to build the local Ninja so that we can
see how much time we would save by stashing a pre-built Ninja in CI.
Ninja builds its tests by default.
We don't run the Ninja test suite, we aren't doing development on Ninja,
and we are using a release tag that has been verified to work. There
isn't much point in building the tests if we're not going to use them.
Disabling building the Ninja tests. If it is desirable to build them,
one can set `BUILD_TESTING` to `YES` and re-run their build.
This patch switches the Ninja build from using the configure.py script
to building with the just-built CMake.
The configure.py in Ninja 1.11.1 still uses Python 2.7, importing the
`pipes` module. The pipes module was deprecated in Python 3.11 and
removed in 3.13, so folks using newer versions of Python are running
into issues with this.
The CMake build doesn't have this issue and is also perfectly valid, so
we can switch to that.
What is nice about this is that by not using extra-cmake-args, we can avoid
passing this into LLVM as well when attempting to reproduce failures on the bots
(thus avoiding having to rebuild LLVM as well).
I have been doing this using extra-cmake-args/etc... just feels better to have
an actual option to do this.
Just did this quickly while waiting for my Linux build to finish that uses
extra-cmake-args to set the linker.
This was quite brittle and has now been superseded
by swift-xcodegen. Remove the CMake/build-script
logic for it, leaving the option behind to inform
users to switch to using xcodegen instead.
* Reapply '[BuildSystem] Stop building for i386-watch-simulator (#77692)'
* [BuildSystem] Stop building for i386-watch-simulator
In Xcode16 it is not supported.
This initially broke client projects who were still building the legacy
architecture but now that's resolved.
`JSONEncoder` by default will escape slashes, which results in a string
that isn't technically valid Base64. Since that behaviour is optional,
turn it off, and at the same time tell it to output in lexical key
order, which makes the test slightly simpler (no `CHECK-DAG` needed).
Also fixed a typo in `test_swift.py`
rdar://124913332
Move the backtracing code into a new Runtime module. This means renaming
the Swift Runtime's CMake target because otherwise there will be a name
clash.
rdar://124913332
* Make pointer bounds non-experimental
* Rename @PointerBounds to @_SwiftifyImport
* Rename filenames containing PointerBounds
* Add _PointerParam exception to stdlib ABI test
* Add _PointerParam to stdlib API changes
* Rename _PointerParam to _SwiftifyInfo
* Revert "[Build] Fix swift_build_support tests."
This reverts commit fc2d1b3b23.
* Revert "[BuildSystem] Stop building for i386-watch-simulator (#77692)"
This reverts commit 1ab968d2b6.
This change can't be made without other issues fixed downstream first.
Add @PointerBounds macro
@PointerBounds is a macro intended to be applied by ClangImporter when
importing functions with pointer parameters from C headers. By
leveraging C attributes we can get insight into bounds, esapability, and
(eventually) lifetimes of pointers, allowing us to map them to safe(r)
and more ergonomic types than UnsafePointer.
This initial macro implementation supports CountedBy and Sizedby, but
not yet EndedBy. It can generate function overloads with and without an
explicit count parameter, as well as with UnsafeBufferPointer or Span
(if marked nonescaping), and any of their combinations. It supports
nullable/optional pointers, and both mutable and immutable pointers.
It supports arbitrary count expressions. These are passed to the macro
as a string literal since any parameters referred to in the count
expression will not have been declared yet when parsing the macro.
It does not support indirect pointers or inout parameters. It supports
functions with return values, but returned pointers can not be bounds
checked yet.
Bounds checked pointers must be of type Unsafe[Mutable]Pointer[?]<T>
or Unsafe[Mutable]RawPointer[?]. Count expressions must conform to
the BinaryInteger protocol, and have an initializer with signature
"init(exactly: Int) -> T?" (or be of type Int).
rdar://137628612
---------
Co-authored-by: Doug Gregor <dgregor@apple.com>
Currently those are hardcoded to `-g`, but in some Apple internal
configurations we would like to change them.
There are other part of the build system that hardcode `-g`
(e.g. in `SwiftCompilerSources` and `AddSwiftStdlib.cmake`),
but we are not interested in those at the moment -- we will address those
in the future if need be.
Supports rdar://127503136
`unitest.assertEquals` is deprecated in Python 3.2 and finally removed in
Python 3.12 [1]. Due to this, this test files in recent Linux distros,
like Ubuntu 24.04 or Fedora 38+. This patch replaces the deprecated
function with `assertEqual`.
[1] https://docs.python.org/3/whatsnew/3.12.html
Now that the compilation model of noncopyable types is enabled everywhere,
and one can enable the feature for specific modules, we no longer need a
separate build-script/CMake option to enable it globally. Remove it all.
With this build-script has a flag --enable-experimental-nonescpable-types=1
to enable this feature in stdlib.
Also we can now add // REQUIRES: nonescapable_types to tests which run only when
the compiler is built with this feature turned on.
This patch introduces `--enable-experimental-noncopyable-generics` for
the build script. It replaces
`--swift-stdlib-experimental-noncopyable-generics`
The old build option only enables the feature when building the
stdlib, but if we've built the stdlib with NoncopyableGenerics, the
compiler should be hardwired to have that feature enabled, too.
This patch also introduces the `noncopyable_generics` lit parameter, so
that tests assuming the system was built with the feature can live
in-tree and be tested, if they specify `REQUIRES: noncopyable_generics`.
Treat the C++ interop modules similar to the Concurrency and
StringProcessing modules, enabled through a top-level global flag. The
flag now enables disabling the C++ interop modules when the standard
library is built.
Based on the original work by Egor Zhdan!
I'd inserted an extra line, which upset the line numbers in the backtracing
tests.
Also tweak the Python build script tests slightly so they work.
rdar://106234311
* Move Runtime into _Runtime
Fix more _Runtime names
* Add availability to all API
* Build _Runtime and Reflection modules
* Use threading's mutex for all platforms
add stdlib include
The `__future__` we relied on is now, where the 3 specific things are
all included [since Python 3.0](https://docs.python.org/3/library/__future__.html):
* absolute_import
* print_function
* unicode_literals
* division
These import statements are no-ops and are no longer necessary.