We introduce a new macro called #SwiftSettings that can be used in conjunction
with a new stdlib type called SwiftSetting to control the default isolation at
the file level. It overrides the current default isolation whether it is the
current nonisolated state or main actor (when -enable-experimental-feature
UnspecifiedMeansMainActorIsolated is set).
Separate swift-syntax libs for the compiler and for the library plugins.
Compiler communicates with library plugins using serialized messages
just like executable plugins.
* `lib/swift/host/compiler/lib_Compiler*.dylib`(`lib/CompilerSwiftSyntax`):
swift-syntax libraries for compiler. Library evolution is disabled.
* Compiler (`ASTGen` and `swiftIDEUtilsBridging`) only depends on
`lib/swift/host/compiler` libraries.
* `SwiftInProcPluginServer`: In-process plugin server shared library.
This has one `swift_inproc_plugins_handle_message` entry point that
receives a message and return the response.
* In the compiler
* Add `-in-process-plugin-server-path` front-end option, which specifies
the `SwiftInProcPluginServer` shared library path.
* Remove `LoadedLibraryPlugin`, because all library plugins are managed
by `SwiftInProcPluginServer`
* Introduce abstract `CompilerPlugin` class that has 2 subclasses:
* `LoadedExecutablePlugin` existing class that represents an
executable plugin
* `InProcessPlugins` wraps `dlopen`ed `SwiftInProcPluginServer`
* Unified the code path in `TypeCheckMacros.cpp` and `ASTGen`, the
difference between executable plugins and library plugins are now
abstracted by `CompilerPlugin`
Introduce a new expression macro that produces an value of type
`(any AnyActor)?` that describes the current actor isolation. This
isolation will be `nil` in non-isolated code, and refer to either the
actor instance of shared global actor in other cases.
This is currently behind the experimental feature flag
OptionalIsolatedParameters.
Instead of emitting an warning to the diagnostic engine, return the
plugin loading error as the result of the request. So that the user
can decide to emit it as a warning or an error.
Executable compiler plugins are programs invoked by the host compiler
and communicate with the host with IPC via standard IO (stdin/stdout.)
Each message is serialized in JSON, prefixed with a header which is a
64bit little-endian integer indicating the size of the message.
* Basic/ExecuteWithPipe: External program invocation. Lik
llvm::sys::ExecuteNoWait() but establishing pipes to the child's
stdin/stdout
* Basic/Sandbox: Sandboxed execution helper. Create command line
arguments to be executed in sandbox environment (similar to SwiftPM's
pluging sandbox)
* AST/PluginRepository: ASTContext independent plugin manager
* ASTGen/PluginHost: Communication with the plugin. Messages are
serialized by ASTGen/LLVMJSON
rdar://101508815
Align the grammar of macro declarations with SE-0382, so that macro
definitions are parsed as an expression. External macro definitions
are referenced via a referenced to the macro `#externalMacro`. Define
that macro in the standard library, and recognize uses of it as the
definition of other macros to use externally-defined macros. For
example, this means that the "stringify" macro used in a lot of
examples is now defined as something like this:
@expression macro stringify<T>(_ value: T) -> (T, String) =
#externalMacro(module: "MyMacros", type: "StringifyMacro")
We still parse the old "A.B" syntax for two reasons. First, it's
helpful to anyone who has existing code using the prior syntax, so they
get a warning + Fix-It to rewrite to the new syntax. Second, we use it
to define builtin macros like `externalMacro` itself, which looks like this:
@expression
public macro externalMacro<T>(module: String, type: String) -> T =
Builtin.ExternalMacro
This uses the same virtual `Builtin` module as other library builtins,
and we can expand it to handle other builtin macro implementations
(such as #line) over time.