Due to case-insensitive filesystems, "import foundation" can result in the
overlay module for Foundation being loaded. Everything is confused later on
because the (wrong) module name is used in manglings, leading to all sorts
of issues.
This is not the right fix for the problem, because a user really is allowed
to have modules named "foundation" and "FOUNDATION" and "Foundation" coexisting
on their system. To do that we'll want to check the actual case of a
.framework bundle or .swiftmodule file on disk and make sure it matches before
even trying to load the file. But this is a good sanity check anyway.
rdar://problem/15632996
Swift SVN r22818
Like the Clang decls, this happens at the end of the type-checking, just as
a simple walk through the loaded decls of the loaded modules. This caught
all of the issues in this commit series and will hopefully keep us honest in
the future.
(By the way, we don't verify right when we return a deserialized decl for the
same reason we don't verify right when we return an imported decl: parts of
the decl may be delayed, and (a) we don't want to force things to be imported
or deserialized sooner than necessary, yet (b) we want to verify as much as
possible.)
rdar://problem/16968891
Swift SVN r22200
This is useful both for caching purposes and for comparison of discriminators
(something the debugger will need to do when looking up a particular decl).
No observable functionality change.
Swift SVN r21610
We currently mangle private declarations exactly like public declarations,
which means that private entities with the same name and same type will
have the same symbol even if defined in separate files.
This commit introduces a new mangling production, private-decl-name, which
includes a discriminator string to identify the file a decl came from.
Actually producing a unique string has not yet been implemented, nor
serialization, nor lookup using such a discriminator.
Part of rdar://problem/17632175.
Swift SVN r21598
This performs very conservative dependency generation for each compile task
within a full compilation. Any source file, swiftmodule, or Objective-C
header file that is /touched/ gets added to the dependencies list, which
is written out on a per-input basis at the end of compilation.
This does /not/ handle dependencies for the aggregated swiftmodule, swiftdoc,
generated header, or linked binary. This is just the minimum needed to get
Xcode to recognize what needs to be rebuilt when a header or Swift source
file changes. We can revisit this later.
This finishes <rdar://problem/14899639> for now.
Swift SVN r18045
Also, create the Clang module loader directly rather than indirecting through
a "get constructor" function. It's no longer a valid configuration to not
have a Clang importer.
Swift SVN r16862
The driver infers the filename from the module file by replacing the extension,
and passes the explicit path to the swiftdoc file to the frontend. But there
is no option in the driver to control emission of swiftdoc (it is always
emitted, and name is always inferred from the swiftmodule name).
The swiftdoc file consists of a single table that maps USRs to {brief comment,
raw comment}. In order to look up a comment for decl we generate the USR
first. We hope that the performance hit will not be that bad, because most
declarations come from Clang. The advantage of this design is that the
swiftdoc file is not locked to the swiftmodule file, and can be updated,
replaced, and even localized.
Swift SVN r14914
Make the name lookup interfaces all take DeclNames instead of identifiers, and update the lookup caches of the various file units to index their members by both compound name and simple name. Serialized modules are keyed by identifiers, so as a transitional hack, do simple name lookup then filter the results by compound name.
Swift SVN r14768
Swift can now find modules inside framework bundles matching this layout:
Foo.framework/
Foo.swiftmodule/
ARCH.swiftmodule
Currently, ARCH is the architecture name used by build configurations (#if),
but this was more done out of convenience than anything else (there's
currently no access to the current target from the ASTContext). We'll need
to revisit this if/when we decide to support architecture subtypes (armv7s
vs. armv7 vs. arm), at which point we'll also have to deal with fallback
architectures.
Framework search paths are specified using -F. Like bare import paths, there
are currently no "built-in framework search paths".
The master plan for Swift frameworks is in <rdar://problem/16062602>.
<rdar://problem/16155907>
Swift SVN r14363
This is necessary since if one wishes to write a secondary tool with swift
headers, one can not access the ModuleFile in SerializedASTFile since to do so
would require you to be a friend of the class, something that would create a
build dependency in between the secondary tool and the swift libraries.
Swift SVN r14171
From now on, /any/ changes to SIL or AST serialization must increment
VERSION_MINOR in ModuleFormat.h.
The original intent of VERSION_MAJOR/VERSION_MINOR was that VERSION_MAJOR
would only increment when backwards-incompatible changes are introduced,
and VERSION_MINOR merely indicates whether to expect additional information.
However, the module infrastructure currently isn't forgiving enough to accept
even backwards-compatible changes to the record schemas, and the SIL
serialization design might not be compatible with that at all.
So for now, treat any version number 0.x as incompatible with any other 0.y.
We can bump to 1 when we hit stability.
<rdar://problem/15494343>
Swift SVN r13841
Also, disallow creating Modules and FileUnits on the stack. They must always
live as long as the ASTContext.
<rdar://problem/15596964>
Swift SVN r13671
This necessitated adding a new function to validate a serialized AST, so
that we can get the same information that used to be extracted from the
section header.
For now, we'll continue accepting the wrapped ASTs as well, since we
haven't changed the existing debug info generator.
Swift SVN r12922
We don't currently use this for anything, but if we have the module name
available and easy to access in the bitstream, we can drop the wrapper
around the serialized AST that's put into the binary itself for use by LLDB.
Swift SVN r12921
Each loaded file gets added to the main module, rather than being a standalone
separate module. In theory, this will be used to assemble several partial
ASTs into a complete module. In practice, there's still a ways to go...but
this can already round-trip a single module file.
This also factors out the FileUnit-creating part of SerializedModuleLoader,
which should help clients like SourceKit that don't need to search for a
swiftmodule file associated with a particular import.
Swift SVN r10952
Now that everything is done in terms of FileUnits, we don't need LoadedModule
anymore, and now that FileUnits just use virtual dispatch, we don't need to
indirect through ModuleLoader to distinguish them.
This doesn't quite simplify as much as it could, because the next change is
going to combine TranslationUnit and Module.
Swift SVN r10836
Part of the FileUnit restructuring. A serialized module is now represented as
a TranslationUnit containing a single SerializedASTFile.
As part of this change, the FileUnit interface has been made virtual, rather
than switching on the Kind in every accessor. We think the operations
performed on files are sufficiently high-level that this shouldn't affect us.
A nice side effect of all this is that we now properly model the visibility
of modules imported into source files. Previously, we would always consider
the top-level imports of all files within a target, whether re-exported or
not.
We may still end up wanting to distinguish properties of a complete Swift
module file from a partial AST file, but we can do that within
SerializedModuleLoader.
Swift SVN r10832
The goal of this series of commits is to allow the main module to consist
of both source files and AST files, where the AST files represent files
that were already built and don't need to be rebuilt, or of Swift source
files and imported Clang headers that share a module (because they are in
the same target).
Currently modules are divided into different kinds, and that defines how
decls are looked up, how imports are managed, etc. In order to achieve the
goal above, that polymorphism should be pushed down to the individual units
within a module, so that instead of TranslationUnit, BuiltinModule,
SerializedModule, and ClangModule, we have SourceFile, BuiltinUnit,
SerializedFile, and ClangUnit. (Better names welcome.) At that point we can
hopefully collapse TranslationUnit into Module and make Module non-polymorphic.
This commit makes SourceFile the subclass of an abstract FileUnit, and
makes TranslationUnit hold an array of FileUnits instead of SourceFiles.
To demonstrate that this is actually working, the Builtin module has also
been converted to FileUnit: it is now a TranslationUnit containing a single
BuiltinUnit.
Swift SVN r10830
Each one has a different kind of lookup cache anyway, and there's no real
reason to have them share storage at the cost of type-safety.
Swift SVN r9242
docs/Resilience.rst describes the notion of a resilience component:
if the current source file is in the same component as a module being
used, it can use fragile access for everything in the other module,
with the assumption that everything in a component will always be
recompiled together.
However, nothing is actually using this today, and the interface we
have is probably not what we'll want in 2.0, when we actually implement
resilience.
Swift SVN r9174
getDisplayDecls() was introduced for ":print_module" and works slightly differently, e.g.
it will return the decls from a shadowed clang module, since we want to display them.
Swift SVN r7909
Add tools/lldb-moduleimport-test, which simulates LLDB importing modules
from the __apple_ast section in Mach-O files and use it to regression-test
the new API.
Swift SVN r7709
This is basically the same as doing a :print_decl on every decl in the module,
except that it does not print extensions that come from other modules, and
/does/ print extensions and operators that come from this module.
Does not yet work for Clang modules or the Builtin module.
Swift SVN r7601
In Swift, a module is expected to know which libraries it needs, rather than
having this specified by an external module map. While we haven't quite
designed this yet (frameworks get this for free in Clang, for example),
we can at least provide a simple option for the common case of a module
associated with a single library.
This will probably change in the future, so I left in the more general
deserialization code I was working on before simplifying the use case.
A loaded module can in theory specify any arbitrary frameworks or libraries
as dependencies, not just a single dylib.
Swift SVN r7583
...instead of just those that are re-exported. This will be used for
autolinking (and probably few other places).
As part of this, we get two name changes:
(1) Module::getReexportedModules -> getImportedModules
(2) TranslationUnit::getImportedModules -> getImports
The latter doesn't just get modules-plus-access-paths; it also includes
whether or not the import is re-exported. Mainly, though, it just didn't
seem like a good idea to overload this name when the two functions aren't
really related.
No tests yet, will come with autolinking.
Swift SVN r7487
This will be used to resolve properties and method calls on objects with
dynamic-lookup ("id") type. For now, this is tested in swift-ide-test
by using the -dynamic-lookup-completion option and providing a
-code-completion-token value.
Caveats/TODOs:
- As before, since we're using the global method pool, this isn't scoped by
module. We could do a per-module filter, but I don't know if that will
actually buy us much.
- Again, Clang's method pool does not include methods from protocols.
- Lookup by selector name cannot find properties with a customized getter
name. <rdar://problem/14776565>
- The Clang-side method pool is keyed by selector, but Swift wants to look
things up by method name, which maps to the first selector piece, so we
end up having to do a scan of all the selectors in the pool.
Swift SVN r7330
With this, we can now get a list of all class members* available in the
current translation unit, which will be necessary for doing id-style
dynamic lookup (inferring which method you're referring to when the base
type is some magic "dynamic lookup" type).
* Including members of protocols, since a class we don't know about could
have implemented the protocol.
Since there is no code currently using this, I've added a new mode to
swift-ide-test to just dump all class members -- what will eventually
happen when you code complete on a dynamic lookup type. This mode will
go away once the other pieces of id-style lookup are in place.
Swift SVN r7287
...by adding a new callback to ModuleLoader: loadDeclsConformingTo.
This is used only when the type checker doesn't have enough contextual
information to resolve an expression involving a literal, so it's
possible many *LiteralConvertible types will never be loaded.
Deserialization of types with conversion methods is still eager, since
there's no easy hook to tell when they're needed, but the list has been
renamed to refer to any decls that need to be eagerly deserialized, in
case we need it for other purposes in the future.
This probably won't help much in a real program, but it cuts the test
run time by about 5-10% in my build.
Swift SVN r7268
This switches from simple lists of decls to name-based on-disk hash tables,
which allows decls to be loaded lazily when doing simple lookup (but not
code completion, at least not yet).
The on-disk hash table implementation is borrowed from Clang; eventually
it will be pushed down to LLVM's Support library. (Fortunately the
implementation is header-only.)
This breaks a few tests that rely on magic protocols like
IntegerLiteralConvertible, because the type checker won't have seen the
types that conform to those protocols yet. This will be fixed by doing
an additional "hey, modules, got any of these?" lookup.
Swift SVN r7259
Now that we have true serialized modules, the standard library can import
the Builtin module without any special direction (beyond -parse-stdlib),
and anyone can include those modules without special direction.
Swift SVN r6752
This involved threading it through ModuleLoader, as with all the other
module-generic callbacks. I plan to collapse a bit of the chaining, but
unfortunately not that much.
This brings back the CodeCompletion tests.
Swift SVN r6527
Rather than automatically re-exporting or not re-exporting every import in
a TranslationUnit, we'll eventually want to control which imports are local
(most of them) and which imports are shared with eventual module loaders.
It's probably not worth implementing this for TranslationUnit, but
LoadedModule can certainly do something here.
Currently, a LoadedModule is even more permissive than a TranslationUnit:
all imports are re-exported. We can lock down on this once we have a
re-export syntax.
Swift SVN r6523