`@GlobalActor(unsafe)` and `@preconcurrency @GlobalActor` mean the same
thing, but there were two different representations in the actor isolation
checker. Standardize on the preconcurrency representation.
It's not clear that its worth keeping this as a
base class for SerializedAbstractClosure and
SerializedTopLevelCodeDecl, most clients are
interested in the concrete kinds, not only whether
the context is serialized.
Most clients only want to set one of the two
parameters, split it into `setPattern` and
`setInitContext` (the latter of which now
handles calling `setBinding`).
Switch from promising a DeclContext to a
PatternBindingInitializer.
This has a couple of benefits:
- It eliminates a few places where we were force
`cast`'ing to PatternBindingInitializer.
- It improves the clarity of what's being stored,
it's not whatever the parent context of the
initializer is, it's specifically the
PatternBindingInitializer context if it exists.
Due to the duality between the expression and declaration forms of
freestanding macros, we could end up assigning two different discriminators
to what is effectively the same freestanding macro expansion. Across
different source files, this could lead to inconsistent discriminators in
different translation units. Unify the storage of the discriminator to
avoid this issue.
Fixes rdar://116259748
Instead of injecting Copyable & Escapable protocols into every
ExistentialLayout, only add those protocols if the existing protocols
don't already imply them. This simplifies things like `any Error`
protocol, so it still only lists one protocol in its existential layout.
But existentials like `any NoCopyP` still end up with a Copyable in its
layout.
Generate all entries, and ensure we introduce a
PatternBindingInitializer context for non-local
cases. Also use this opportunity to cleanup
`PatternBindingDecl::create`.
TypeDecl::canBeNoncopyable is never going to be fully accurate. In this
instance, we were incorrectly treating some types like `S<T: ~Copyable>`
as noncopyable, and thus non-trivial, despite them in some cases being
Copyable.
Correctly determining the DeclContext needed for an
ExplicitCaughtTypeRequest is tricky for a number of callers, and
mistakes here can easily lead to redundant computation of the caught
type, redundant diagnostics, etc.
Instead, put a `DeclContext` into `DoCatchStmt`, because that's the
only catch node that needs a `DeclContext` but does not have one.
Teach the constraint system to use the same primitives as elsewhere to
determine the type context for a `throw` statement and the caught
error type within a `do..catch` statement. This makes
explicitly-specified `throws` work on `do..catch` that occurs in
closures.
Cleans up some redundant computations for caught error types.
These two requests are effectively doing the same thing to two
different cases within CatchNode. Unify the requests into a single
request, ExplicitCaughtTypeRequest, which operates on a CatchNode.
This also moves the logic for closures with explicitly-specified throws
clauses into the same request, taking it out of the constraint system.
Some notes:
This is not emitted by SILGen. This is just intended to be used so I can write
SIL test cases for transfer non sendable. I did this by adding an
ActorIsolationCrossing field to all FullApplySites rather than adding it into
the type system on a callee. The reason that this makes sense from a modeling
perspective is that an actor isolation crossing is a caller concept since it is
describing a difference in between the caller's and callee's isolation. As a
bonus it makes this a less viral change.
For simplicity, I made it so that the isolation is represented as an optional
modifier on the instructions:
apply [callee_isolation=XXXX] [caller_isolation=XXXX]
where XXXX is a printed representation of the actor isolation.
When neither callee or caller isolation is specified then the
ApplyIsolationCrossing is std::nullopt. If only one is specified, we make the
other one ActorIsolation::Unspecified.
This required me to move ActorIsolationCrossing from AST/Expr.h ->
AST/ActorIsolation.h to work around compilation issues... Arguably that is where
it should exist anyways so it made sense.
rdar://118521597
The spelling kind was only ever set to
`StaticSpellingKind::None`, and the static location
was never used for anything (and should be queried
on the storage anyway). This doesn't affect the
computation of `isStatic` since `IsStaticRequest`
already takes the static-ness from the storage for
accessors.