Use the name mangling scheme we've devised for macro expansions to
back the implementation of the macro expansion context's
`getUniqueName` operation. This way, we guarantee that the names
provided by macro expansions don't conflict, as well as making them
demangleable so we can determine what introduced the names.
- SILPackType carries whether the elements are stored directly
in the pack, which we're not currently using in the lowering,
but it's probably something we'll want in the final ABI.
Having this also makes it clear that we're doing the right
thing with substitution and element lowering. I also toyed
with making this a scalar type, which made it necessary in
various places, although eventually I pulled back to the
design where we always use packs as addresses.
- Pack boundaries are a core ABI concept, so the lowering has
to wrap parameter pack expansions up as packs. There are huge
unimplemented holes here where the abstraction pattern will
need to tell us how many elements to gather into the pack,
but a naive approach is good enough to get things off the
ground.
- Pack conventions are related to the existing parameter and
result conventions, but they're different on enough grounds
that they deserve to be separated.
When a declaration has a structural opaque return type like:
func foo() -> Bar<some P>
then to mangle that return type `Bar<some P>`, we have to mangle the `some P`
part by referencing its defining declaration `foo()`, which in turn includes
its return type `Bar<some P>` again (this time using a special mangling for
`some P` that prevents infinite recursion). Since we mangle `Bar<some P>`
once as part of mangling the declaration, and we register substitutions for
bound generic types when they're complete, we end up registering the
substitution for `Bar<some P>` twice, once as the return type of the
declaration name, and again as the actual type. This would be fine, except
that the mangler doesn't check for key collisions, and it picks
substitution indexes based on the number of entries in its hash map, so
the duplicated substitution ends up corrupting the substitution sequence,
causing the mangler to produce an invalid mangled name.
Fixing that exposes us to another problem in the remangler: the AST
mangler keys substitutions by type identity, but the remangler
uses the value of the demangled nodes to recognize substitutions.
The mangling for `Bar<current declaration's opaque return type>` can
appear multiple times in a demangled tree, but referring to different
declarations' opaque return types, and the remangler would reconstruct
an incorrect mangled name when this happens. To avoid this, change the
way the demangler represents `OpaqueReturnType` nodes so that they
contain a backreference to the declaration they represent, so that
substitutions involving different declarations' opaque return types
don't get confused.
* [SILOptimizer] Add prespecialization for arbitray reference types
* Fix benchmark Package.swift
* Move SimpleArray to utils
* Fix multiple indirect result case
* Remove leftover code from previous attempt
* Fix test after rebase
* Move code to compute type replacements to SpecializedFunction
* Fix ownership when OSSA is enabled
* Fixes after rebase
* Changes after rebasing
* Add feature flag for layout pre-specialization
* Fix pre_specialize-macos.swift
* Add compiler flag to benchmark build
* Fix benchmark SwiftPM flags
Previously, for the BridgedProperty pattern, there were two flavors of
outlined function that would be formed, varying on the ownership of the
instance whose field is being access:
(1) guaranteed_in -- for use by addresses
(2) unowned -- for use by values which were not destroyed until some
time after the pattern of interest is matched
Now that the lifetime of the instance may be shortened to just after the
call to the objc method, the latter of these is not appropriate for
values. We would have to re-extend the lifetime until after the method
returns.
Instead, here, we add a new variant
(3) owned -- for use by values which were destroyed just after the objc
method call
Doing so requires new mangling.
For performance annotations we need the generic specializer to trop non-generic metatype argumentrs
(which we don't do in general). For this we need a separate mangling.
Upgrade the old mangling from a list of argument types to a
list of requiremnets. For now, only same-type requirements
may actually be mangled since those are all that are available
to the surface language.
Reconstruction of existential types now consists of demangling (a list of)
base protocol(s), decoding the constraints, and converting the same-type
constraints back into a list of arguments.
rdar://96088707
The layout of constant static arrays differs from non-constant static arrays.
Therefore use a different mangling to get symbol mismatches if for some reason two modules don't agree on which version a static array is.
I wrote out this whole analysis of why different existential types
might have the same logical content, and then I turned around and
immediately uniqued existential shapes purely by logical content
rather than the (generalized) formal type. Oh well. At least it's
not too late to make ABI changes like this.
We now store a reference to a mangling of the generalized formal
type directly in the shape. This type alone is sufficient to unique
the shape:
- By the nature of the generalization algorithm, every type parameter
in the generalization signature should be mentioned in the
generalized formal type in a deterministic order.
- By the nature of the generalization algorithm, every other
requirement in the generalization signature should be implied
by the positions in which generalization type parameters appear
(e.g. because the formal type is C<T> & P, where C constrains
its type parameter for well-formedness).
- The requirement signature and type expression are extracted from
the existential type.
As a result, we no longer rely on computing a unique hash at
compile time.
Storing this separately from the requirement signature potentially
allows runtimes with general shape support to work with future
extensions to existential types even if they cannot demangle the
generalized formal type.
Storing the generalized formal type also allows us to easily and
reliably extract the formal type of the existential. Otherwise,
it's quite a heroic endeavor to match requirements back up with
primary associated types. Doing so would also only allows us to
extract *some* matching formal type, not necessarily the *right*
formal type. So there's some good synergy here.
The demangling library can't use the error handling from the main runtime
because it isn't always linked with it. However, it's useful to have
some error handling, and in particular to be able to get data into the
crash logs.
This is complicated because of the way the demangling library gets used,
the upshot of which is that I've had to add a second object library just
for libswiftCore's use, so that the demangler will use the runtime's
error handling functions when present, and fall back on its own when
they aren't.
rdar://89139049
I was trying to use fatalError() here, but that is in libswiftRuntime,
which isn't linked into everything that has the demangler code in it.
The upshot is that we'd have to touch a lot of other projects to use
fatalError().
rdar://89139049
We need this in order to gather relevant information when this situation
arises; it's clearly happening (e.g. rdar://86071019), but not often
enough for it to trigger in a build with assertions enabled.
rdar://89139049
* [Distributed] Implement func metadata and executeDistributedTarget
dont expose new entrypoints
able to get all the way to calling _execute
* [Distributed] reimplement distributed get type info impls
* [Distributed] comment out distributed_actor_remoteCall for now
* [Distributed] disable test on linux for now
The `Qr` mangling is used to refer to the opaque type within the
declaration that produces the opaque type. When there are multiple
opaque types, e.g., due to structural or named opaque result types, it
does not specify which of the opaque type parameters it refers to.
Introduce a new mangling `QR INDEX` for opaque type parameters after
the first, retaining the `Qr` mangling for the first opaque type
parameter. This way, existing (non-structural) uses of opaque result
types retain the same manglings, but uses of structural or named
opaque result types (new features) will have distinct manglings.
Note that this mangling within a declaration is only used for the
declaration itself, and not for references to the opaque type of the
declaration, so there is no impact on the runtime demangler.
These were originally meant to be no-return functions since they're going to abort. They were accidentally changed to no-discard functions despite not having a return value.
The internal compiler headers should not include swift shim headers. Removing this dependency allows libSwift to import Swift compiler headers (otherwise, we get name conflics, because we import SwiftShims headers twice: from the source includes and build includes).
Distributed thunks were using the same mangling as direct method
reference thunks (i.e., for "super" calls). Although not technically
conflicting so long as actors never gain inheritance, it's confusing
and could cause problems in the future. So, introduce a distinct
mangling for distributed thunks and plumb them through the demangling
and remangler.