* [SILOptimizer] Add prespecialization for arbitray reference types
* Fix benchmark Package.swift
* Move SimpleArray to utils
* Fix multiple indirect result case
* Remove leftover code from previous attempt
* Fix test after rebase
* Move code to compute type replacements to SpecializedFunction
* Fix ownership when OSSA is enabled
* Fixes after rebase
* Changes after rebasing
* Add feature flag for layout pre-specialization
* Fix pre_specialize-macos.swift
* Add compiler flag to benchmark build
* Fix benchmark SwiftPM flags
For performance annotations we need the generic specializer to trop non-generic metatype argumentrs
(which we don't do in general). For this we need a separate mangling.
Upgrade the old mangling from a list of argument types to a
list of requiremnets. For now, only same-type requirements
may actually be mangled since those are all that are available
to the surface language.
Reconstruction of existential types now consists of demangling (a list of)
base protocol(s), decoding the constraints, and converting the same-type
constraints back into a list of arguments.
rdar://96088707
The layout of constant static arrays differs from non-constant static arrays.
Therefore use a different mangling to get symbol mismatches if for some reason two modules don't agree on which version a static array is.
I wrote out this whole analysis of why different existential types
might have the same logical content, and then I turned around and
immediately uniqued existential shapes purely by logical content
rather than the (generalized) formal type. Oh well. At least it's
not too late to make ABI changes like this.
We now store a reference to a mangling of the generalized formal
type directly in the shape. This type alone is sufficient to unique
the shape:
- By the nature of the generalization algorithm, every type parameter
in the generalization signature should be mentioned in the
generalized formal type in a deterministic order.
- By the nature of the generalization algorithm, every other
requirement in the generalization signature should be implied
by the positions in which generalization type parameters appear
(e.g. because the formal type is C<T> & P, where C constrains
its type parameter for well-formedness).
- The requirement signature and type expression are extracted from
the existential type.
As a result, we no longer rely on computing a unique hash at
compile time.
Storing this separately from the requirement signature potentially
allows runtimes with general shape support to work with future
extensions to existential types even if they cannot demangle the
generalized formal type.
Storing the generalized formal type also allows us to easily and
reliably extract the formal type of the existential. Otherwise,
it's quite a heroic endeavor to match requirements back up with
primary associated types. Doing so would also only allows us to
extract *some* matching formal type, not necessarily the *right*
formal type. So there's some good synergy here.
The `Qr` mangling is used to refer to the opaque type within the
declaration that produces the opaque type. When there are multiple
opaque types, e.g., due to structural or named opaque result types, it
does not specify which of the opaque type parameters it refers to.
Introduce a new mangling `QR INDEX` for opaque type parameters after
the first, retaining the `Qr` mangling for the first opaque type
parameter. This way, existing (non-structural) uses of opaque result
types retain the same manglings, but uses of structural or named
opaque result types (new features) will have distinct manglings.
Note that this mangling within a declaration is only used for the
declaration itself, and not for references to the opaque type of the
declaration, so there is no impact on the runtime demangler.
Distributed thunks were using the same mangling as direct method
reference thunks (i.e., for "super" calls). Although not technically
conflicting so long as actors never gain inheritance, it's confusing
and could cause problems in the future. So, introduce a distinct
mangling for distributed thunks and plumb them through the demangling
and remangler.
If you had a type alias (for instance) with its context set to a static
bound generic function, the generic arguments were remangled in the wrong
place because Node::Kind::Static wasn't handled properly in a couple of
functions. Fix that.
rdar://82870372
When back-deploying concurrency support, do not use the standard
substitutions for _Concurrency-defined types (such as `Task`) in type
metadata because older Swift runtimes will not be able to demangle
them. Instead, use the full mangled names so the runtime can still
demangle them appropriately.
Addresses rdar://82931890.
Because DEMANGLER_ASSERT() might cause the remanglers to return a ManglingError
with the code ManglingError::AssertionFailed, it's useful to have a line number
in the ManglingError as well as the other information. This is also potentially
helpful for other cases where the code is used multiple times in the remanglers.
rdar://79725187
First pass at adding error handling to the actual Remangler. There are
still some assert() calls at this point that I'm thinking about.
rdar://79725187
Mangling can fail, usually because the Node structure has been built
incorrectly or because something isn't supported with the old remangler.
We shouldn't just terminate the program when that happens, particularly
if it happens because someone has passed bad data to the demangler.
rdar://79725187
Added a special test for getObjCClassByMangledName; this needs testing
separately as it uses the DecodedMetadataBuilder, which doesn't get exercised
by the normal demangling tests.
Added all the test cases from rdar://63485806, rdar://63488139, rdar://63496478,
rdar://63410196 and rdar://68449341. The test cases from rdar://63485806 are
disabled for now because the problem there is the error handling mechanism (or
lack thereof), rather than us not handling errors.
Fixes the remaining cases from
rdar://63488139
rdar://63496478
We've had a couple of instances where isSpecialized() crashed while while trying
to use remote mirror to inspect a process that had itself crashed. I can't see
any obvious mechanism for that to happen, so for now I decided to make
isSpecialized() more robust in the hope that if it happens again we'll get more
information and might be able to work out how it happened.
rdar://74394596
It's trivially easy to drive the remanglers, the type decoder and the node
printer into a situation where they will overflow the process's stack. For the
compiler, this is fine (though not great), but for the runtime it's a no-no.
This changeset imposes recursion depth limits to prevent uncontrolled stack
overruns.
rdar://68449341
Isolated parameters are part of function types. Encode them in function
type manglings and metadata, and ensure that they round-trip through
the various mangling and metadata facilities. This nails down the ABI
for isolated parameters.
Implement name mangling, type metadata, runtime demangling, etc. for
global-actor qualified function types. Ensure that the manglings
round-trip through the various subsystems.
Implements rdar://78269642.
Introduce a second level of standard substitutions to the mangling,
all of the form `Sc<character>`, and use it to provide standard
substitutions for most of the _Concurrency types.
This is a precursor to rdar://78269642 and a good mangling-size
optimization in its own right.
For `async` function types, an actor constraint can be enforced by the callee by hopping executors,
unlike with `sync` functions, so doesn't need to influence the outward type of the function.
rdar://76248452
Repurpose mangling operator `Y` as an umbrella operator that covers new attributes on function types. Free up operators `J`, `j`, and `k`.
```
async ::= 'Ya' // 'async' annotation on function types
sendable ::= 'Yb' // @Sendable on function types
throws ::= 'K' // 'throws' annotation on function types
differentiable ::= 'Yjf' // @differentiable(_forward) on function type
differentiable ::= 'Yjr' // @differentiable(reverse) on function type
differentiable ::= 'Yjd' // @differentiable on function type
differentiable ::= 'Yjl' // @differentiable(_linear) on function type
```
Resolves rdar://76299796.
`@noDerivative` was not mangled in function types, and was resolved incorrectly when there's an ownership specifier. It is fixed by this patch with the following changes:
* Add `NoDerivative` demangle node represented by a `k` operator.
```
list-type ::= type identifier? 'k'? 'z'? 'h'? 'n'? 'd'? // type with optional label, '@noDerivative', inout convention, shared convention, owned convention, and variadic specifier
```
* Fix `NoDerivative`'s overflown offset in `ParameterTypeFlags` (`7` -> `6`).
* In type decoder and type resolver where attributed type nodes are processed, add support for nested attributed nodes, e.g. `inout @noDerivative T`.
* Add `TypeResolverContext::InoutFunctionInput` so that when we resolve an `inout @noDerivative T` parameter, the `@noDerivative T` checking logic won't get a `TypeResolverContext::None` set by the caller.
Resolves rdar://75916833.
* Move differentiability kinds from target function type metadata to trailing objects so that we don't exhaust all remaining bits of function type metadata.
* Differentiability kind is now stored in a tail-allocated word when function type flags say it's differentiable, located immediately after the normal function type metadata's contents (with proper alignment in between).
* Add new runtime function `swift_getFunctionTypeMetadataDifferentiable` which handles differentiable function types.
* Fix mangling of different differentiability kinds in function types. Mangle it like `ConcurrentFunctionType` so that we can drop special cases for escaping functions.
```
function-signature ::= params-type params-type async? sendable? throws? differentiable? // results and parameters
...
differentiable ::= 'jf' // @differentiable(_forward) on function type
differentiable ::= 'jr' // @differentiable(reverse) on function type
differentiable ::= 'jd' // @differentiable on function type
differentiable ::= 'jl' // @differentiable(_linear) on function type
```
Resolves rdar://75240064.
Import APIs with the `swift_async_error` attribute in `zero_argument` or `nonzero_argument`
modes by checking the corresponding boolean argument to indicate the error status, instead of
treating it as part of the result tuple. rdar://70594666