The Error enum synthesized declarations, e.g. the struct and its static accessors, should generally appear to be identical to the underlying Clang definitions. There are some specific use cases where the synthesized declarations are necessary though.
I've added an option for USR generation to override the Clang node and emit the USR of the synthesized Swift declaration. This is used by SwiftDocSupport so that the USRs of the synthesized declarations are emitted.
Fixes 79912
This allows us to load plugins into the sourcekitd service to handle requests (currently only used for code completion). This allows us to implement parts of sourcekitd in Swift and outside of the compiler repository, making it easier to iterated on them because the compiler doesn’t need to be rebuilt.
While we don't want to return non-editable base names for Edit-All-In-Scope, we do want to return them if the related identifiers response is used as the input for find-syntactic-rename-ranges.
We need this request for semantic highlighting in LSP. Previously, we were getting the semantic tokens using a 0,0 edit after a document update notification but that will no longer be possible if we open the documents in syntactic only mode.
This requests performs an index store index of the given file using the
given index store path and index unit output path. All other options are
derived from the index store related compiler flags.
This will allow IDEs like Xcode to index the file directly inside of
sourcekitd and potentially reuse an already built AST.
Reformatting everything now that we have `llvm` namespaces. I've
separated this from the main commit to help manage merge-conflicts and
for making it a bit easier to read the mega-patch.
This is phase-1 of switching from llvm::Optional to std::optional in the
next rebranch. llvm::Optional was removed from upstream LLVM, so we need
to migrate off rather soon. On Darwin, std::optional, and llvm::Optional
have the same layout, so we don't need to be as concerned about ABI
beyond the name mangling. `llvm::Optional` is only returned from one
function in
```
getStandardTypeSubst(StringRef TypeName,
bool allowConcurrencyManglings);
```
It's the return value, so it should not impact the mangling of the
function, and the layout is the same as `std::optional`, so it should be
mostly okay. This function doesn't appear to have users, and the ABI was
already broken 2 years ago for concurrency and no one seemed to notice
so this should be "okay".
I'm doing the migration incrementally so that folks working on main can
cherry-pick back to the release/5.9 branch. Once 5.9 is done and locked
away, then we can go through and finish the replacement. Since `None`
and `Optional` show up in contexts where they are not `llvm::None` and
`llvm::Optional`, I'm preparing the work now by going through and
removing the namespace unwrapping and making the `llvm` namespace
explicit. This should make it fairly mechanical to go through and
replace llvm::Optional with std::optional, and llvm::None with
std::nullopt. It's also a change that can be brought onto the
release/5.9 with minimal impact. This should be an NFC change.
Update the cursor requests to also pass in their primary file. Snapshots
should be compared using this file, not the input buffer name. This
fixes AST re-use when the AST is usable with snapshots.
Resolves rdar://110344363.
Expand macros in the specified source file syntactically (without any
module imports, nor typechecking).
Request would look like:
```
{
key.compilerargs: [...]
key.sourcefile: <file name>
key.sourcetext: <source text> (optional)
key.expansions: [<expansion specifier>...]
}
```
`key.compilerargs` are used for getting plugins search paths. If
`key.sourcetext` is not specified, it's loaded from the file system.
Each `<expansion sepecifier>` is
```
{
key.offset: <offset>
key.modulename: <plugin module name>
key.typename: <macro typename>
key.macro_roles: [<macro role UID>...]
}
```
Clients have to provide the module and type names because that's
semantic.
Response is a `CategorizedEdits` just like (semantic) "ExpandMacro"
refactoring. But without `key.buffer_name`. Nested expnasions are not
supported at this point.
Driver uses its path to derive the plugin paths (i.e.
'lib/swift/host/plugins' et al.) Previously it was a constant string
'swiftc' that caused SourceKit failed to find dylib plugins in the
toolchain. Since 'SwiftLangSupport' knows the swift-frontend path,
use it, but replacing the filename with 'swiftc', to derive the plugin
paths.
rdar://107849796
Make a single 'PluginRegistry' and share it between SwiftASTManager,
IDEInspectionInstance, and CompileInstance. And inject the plugin
registry to ASTContext right after 'CompilerInstance.setup()'
That way, all sema-capable ASTContext in SourceKit share a single
PluginRegistry.
Update requests to handle being passed a separate `key.primary_file`
which specifies the file to use for building the AST. `key.sourcefile`
is then the file to find in `SourceManager`, which could be a generated
buffer.
Resolves rdar://106863186.
This adds a new `primary_file` key, which defaults to `sourcefile`. For
nested expansions, `primary_file` should be set to the containing file
and `sourcefile` to the name of the macro expansion buffer.
`source.request.activeregions` is a new request that reports all
`#if`, `#else` and `#elseif` decls in the response with an `is_active` flag.
This is mainly useful for a client to know which branches are active,
but for completeness sake, the active decls are also reported.
Note: it only reports the positions of the decls, not the entire ranges.
It's up to clients to map this to the syntactic structure of a tree.
Reporting the ranges of the decls could be confusing in the case
of nested `#if`s, where the ranges can overlap.
Executable compiler plugins are programs invoked by the host compiler
and communicate with the host with IPC via standard IO (stdin/stdout.)
Each message is serialized in JSON, prefixed with a header which is a
64bit little-endian integer indicating the size of the message.
* Basic/ExecuteWithPipe: External program invocation. Lik
llvm::sys::ExecuteNoWait() but establishing pipes to the child's
stdin/stdout
* Basic/Sandbox: Sandboxed execution helper. Create command line
arguments to be executed in sandbox environment (similar to SwiftPM's
pluging sandbox)
* AST/PluginRepository: ASTContext independent plugin manager
* ASTGen/PluginHost: Communication with the plugin. Messages are
serialized by ASTGen/LLVMJSON
rdar://101508815
Running the SourceKit stress tester with verification of solver-based cursor info returned quite a few differences but in all of them, the old AST-based implementation was actually incorrect. So, instead of verifying the results, deliver the results from solver-baesd cursor info and only fall back to AST-based cursor info if the solver-based implementation returned no results.
rdar://103369449
This allows us to mark expected deviations between the AST-based and the solver-based implementation in the stress tester as XFails without breaking actual clients
We always verify if a cursor info request is issued through `sourcekitd-test`.
'sourcekitd' itself should not call 'swift::' functions. It should just
deserialize the request, execute the logic in LangSupport, then serialize
the result.
IDE/Refactoring had dependencies to libswiftIndex, but libswiftIndex
also depends on libswiftIDE (SourceEntityWalker, etc.)
To break libswiftIndex <-> libswiftIDE dependency cycle, move
"refactoring" related files to a new library 'libswiftRefactoring'
rdar://101692282
These libraries formed a strongly connected component in the CMake build graph. The weakest link I could find was from IDE to FrontendTool and Frontend, which was necessitated by the `CompileInstance` class (https://github.com/apple/swift/pull/40645). I moved a few files out of IDE into a new IDETools library to break the cycle.
#58786 (rdar://93030932) was failing because the `swift-frontend` invocations passed a `swiftExecutablePath` to `Invocation.parseArgs`. This caused the `ClangImporter` instance to point to a `clang` binary next to the `swift-frontend` executable while SourceKit used PATH to find `clang`. The clang executable next to `swift-frontend` doesn’t actually exist because `clang` lives in `llvm-linux-aarch64/bin` and `swift-frontend` lives in `swift-linux-aarch64/bin`.
So some checks for a minimum clang verison failed for the normal build (because the executable doesn’t actually exists) while they pass during the SourceKit build (which used `clang` from `PATH`). This in turn caused the `outline-atomics` to be enabled to the SourceKit clang compiler arguments but not the clang compiler arguments for a normal build and thus resulted in two separate module cache directories (which includes the enabled features in the module directory hash).
To fix this issue, also set the swift executable path for compiler invocations created from SourceKit.
Fixes#58786 (rdar://93030932)
Essentially, just wire up cancellation tokens and cancellation flags for `CompletionInstance` and make sure to return `CancellableResult::cancelled()` when cancellation is detected.
rdar://83391488
Previously, `SwiftASTManager` and `SlowRequestSimulator` maintained their own list of in-progress cancellation tokens. With code completion cancellation coming up, there would need to be yet another place to track in-progress requests, so let’s centralize it.
While at it, also support cancelling requests before they are scheduled, eliminating the need for a `sleep` in a test case.
The current implementaiton leaks tiny amounts of memory if a request is cancelled after if finishes. I think this is fine because it is a pretty nieche case and the leaked memory is pretty small (a `std::map` entry pointing to a `std::function` + `bool`). Alternatively, we could require the client to always dispose of the cancellation token manually.
The invocation of the code completion second pass should be implementation detail of `CompletionInstance`. Create a method on `CompletionInstance` that correctly invokes the second pass and just reutnrs the type context info results to the caller.
This refactors a bunch of code-completion methods around `performOperation` to return their results via a callback only instead of the current mixed approach of indicating failure via a return value, returning an error string as an inout parameter and success results via a callback. The new guarantee should be that the callback is always called exactly once on control flow graph.
Other than a support for passing the (currently unused) cancelled state through the different instance, there should be no functionality change.
Currently, SourceKit always implicitly sends diagnostics to the client after every edit. This doesn’t match our new cancellation story because diagnostics retrieval is no request and thus can’t be cancelled.
Instead, diagnostics retrieval should be a standalone request, which returns a cancellation token like every other request and which can thus also be cancelled as such.
The indented transition path here is to change all open and edit requests to be syntactic only. When diagnostics are needed, the new diagnostics request should be used.
rdar://83391522