Most clients were only using it to populate the
main module with files, which is now done by
`getMainModule`. Instead, they can now just rely
on parsing happening lazily.
Lift the `DisablePoundIfEvaluation` parsing option
into `LangOptions` to subsume the need for the
`EvaluateConditionals` parameter, and sink the
computation of `CanDelayBodies` down into
`createSourceFileForMainModule`.
Single-expression closures have always been traversed differently
from multi-statement closures. The former were traversed as if the
expression was their only child, skipping the BraceStmt and implicit
return, while the later was traversed as a normal BraceStmt.
Unify on the latter treatment, so that traversal
There are a few places where we unintentionally relied on this
expression-as-child behavior. Clean those up to work with arbitrary
closures, which is an overall simplification in the logic.
Currently when parsing a SourceFile, the parser
gets handed pointers so that it can write the
interface hash and collected tokens directly into
the file. It can also call `setSyntaxRoot` at
the end of parsing to set the syntax tree.
In preparation for the removal of
`performParseOnly`, this commit formalizes these
values as outputs of `ParseSourceFileRequest`,
ensuring that the file gets parsed when the
interface hash, collected tokens, or syntax tree
is queried.
We would previously hide the protocol, its extensions and members, but the '_'
prefix really just means the protocol itself isn't intended for clients, rather
than its members.
This also adds support for 'fully_annotated_decl' entries in doc-info for
extensions to be consistent with every other decl, and removes the
'fully_annotated_generic_signature' entry we supplied as a fallback.
Also fixes several bugs with the synthesized extensions mechanism:
- The type sustitutions applied to the extension's requirements were computed
using the extension itself as the decl context rather than the extension's
nominal. The meant the extension's requirements themselves were assumed to
hold when determining the substitutions, so equality constraints were always
met. Because of this extension members were incorrectly merged with the base
nominal or its extensions despite having additional constraints.
- Types within the requirements weren't being transformed when printed (e.g.
'Self.Element' was printed rather than 'T') both in the interface output and
in the requirements list. We were also incorrectly printing requirements
that were already satisfied once the base type was subsituted in.
- If both the protocol extension and 'enabling' extension of the base nominal
that added the protocol conformance had conditional requirements, we were
only printing the protocol extension's requirements in the synthesized
extension.
- The USR and annotated decl output embedded in the 'key.doc.full_as_xml'
string for synthesized members were printed to match their original context, rather than
the synthesized one.
Resolves rdar://problem/57121937
Rather than replacing the code completion file
on the `CompilerInstance` whenever we do a cached
top-level completion, let's set a new main module
instead.
This allows us to properly update the
`LoadedModules` map, and allows the retrieval of
the code completion file to be turned into a
request.
Rather than adding a ModuleFile to a parent module
and then removing it afterwards if it fails to
load, let's wait until we've loaded the file before
deciding to add it to the parent module. This then
allows us to get rid of `ModuleDecl::removeFile`.
In addition, push down the calls to `addFile` into
the callers of `loadAST` in preparation for
`addFile` being replaced with a one-time-only call
to a `setFiles` method.
And also rename the underlying request and
descriptor.
This rename is motivated by the fact that the
operation may instead perform parsing of SIL files
and/or deserialization of SIB files.
When producing frontend arguments for sourcekitd, force the output mode
to -typecheck so that we do not create any temporary output files in the
driver. Previously, any sourcekitd operation that created a compiler
invocation would create 0-sized .o file inside $TMPDIR that would never
be cleaned up.
The new swift-driver project handles temporaries much better as
VirtualPath, and should not need this approach.
rdar://62366123
Out handling of clang submodules was handled differently between DocInfo and
InterfaceGen. For InterfaceGen submodules were mapped back to their top-level
clang modules (or their Swift overlay if it had one) before being passed
into printSubmoduleInterface, along with the dot separated name of the submodule.
For DocInfo, they were not, and only the rightmost component of their name was
passed. The call to retrieve the decls from a ModuleDecl doesn't work if the
ModuleDecl wraps a clang submodule, so we were missing these decls.
InterfaceGen for submodules also shouldn't have been mapping the module back to
the overlay of top-level clang module, as that meant we ended up printing
import decls from the Swift overlay in the submodule's interface.
Resolves rdar://problem/57338105
When completing a single argument for a trailing closure, pre-expand the
closure expression syntax instead of using a placeholder. It's not valid
to pass a non-closure anyway.
rdar://62189182
Since placeholder expansion works with a single placeholder, which is
somewhat at odds with multiple-trailing closures, we eagerly attempt to
expand all consecutive placeholders of closure type. That is, if the API
has multiple closure parameters at the end, expanding any one of them
will transform all of them to the new syntax.
Example
```
foo(a: <#T##()->()#>, b: <#T##()->()#>)
```
expanding *either* parameter will produce the following:
```
foo {
<#code#>
} b: {
<#code#>
}
```
(caveat: the indentation is not part of placeholder expansion, but it's
added here for clarity)
At least for now we do not attempt to corral an existing closure into
the new syntax, so for
```
foo(a: { bar() }, b: <#T##()->()#>)
```
The exansion will be
```
foo(a: { bar() }) {
<#code#>
}
```
as it was before.
rdar://59688632
func foo() {}
let a: Int = #^HERE^#
Previously, we marked 'foo()' as 'NotRecommented' because 'Void' doesn't
have any member hence it cannot be 'Int'. But it wass confusing with
'deprecated'.
Now that we output 'typerelation' which is 'invalid' in this case. So clients
can deprioritize results, or even filter them out.
rdar://problem/57726512
Check if dependencies are modified since the last checking.
Dependencies:
- Other source files in the current module
- Dependent files collected by the dependency tracker
When:
- If the last dependency check was over N (defaults to 5) seconds ago
Invalidate if:
- The dependency file is missing
- The modification time of the dependecy is greater than the last check
- If the modification time is zero, compare the content using the file
system from the previous completion and the current completion
rdar://problem/62336432
Move the playground and debugger transforms out
of the Frontend and into `performTypeChecking`, as
we'd want them to be applied if
`performTypeChecking` was called lazily.
Now that we no longer perform whole-file type
checking for code completion, the ASTVerifier is
no longer expecting fully semantically valid AST.
As such, we no longer need to emit an error to
force it to be more lax with its checks.