It eliminates dead access scopes if they are not conflicting with other scopes.
Removes:
```
%2 = begin_access [modify] [dynamic] %1
... // no uses of %2
end_access %2
```
However, dead _conflicting_ access scopes are not removed.
If a conflicting scope becomes dead because an optimization e.g. removed a load, it is still important to get an access violation at runtime.
Even a propagated value of a redundant load from a conflicting scope is undefined.
```
%2 = begin_access [modify] [dynamic] %1
store %x to %2
%3 = begin_access [read] [dynamic] %1 // conflicting with %2!
%y = load %3
end_access %3
end_access %2
use(%y)
```
After redundant-load-elimination:
```
%2 = begin_access [modify] [dynamic] %1
store %x to %2
%3 = begin_access [read] [dynamic] %1 // now dead, but still conflicting with %2
end_access %3
end_access %2
use(%x) // propagated from the store, but undefined here!
```
In this case the scope `%3` is not removed because it's important to get an access violation error at runtime before the undefined value `%x` is used.
This pass considers potential conflicting access scopes in called functions.
But it does not consider potential conflicting access in callers (because it can't!).
However, optimizations, like redundant-load-elimination, can only do such transformations if the outer access scope is within the function, e.g.
```
bb0(%0 : $*T): // an inout from a conflicting scope in the caller
store %x to %0
%3 = begin_access [read] [dynamic] %1
%y = load %3 // cannot be propagated because it cannot be proved that %1 is the same address as %0
end_access %3
```
All those checks are only done for dynamic access scopes, because they matter for runtime exclusivity checking.
Dead static scopes are removed unconditionally.