If we failed to construct a rewrite system for a protocol, either because
the Knuth-Bendix algorithm failed or because of a request cycle while
resolving requirements, we would end up in a situation where the resulting
rewrite system didn't include all conformance requirements and associated
types, so name lookup would find declarations whose interface types are
not valid type parameters.
Fix this by propagating failure better and just doing nothing in
getReducedTypeParameter().
Fixes rdar://147277543.
- Turn `BindExtensionsForIDEInspectionRequest` into the main extension
binding request.
- Change `ExtendedNominalRequest` such that it's no longer what
extension binding calls into to do the name lookup, instead it calls
directly into `computeExtendedNominal`. `getExtendedNominal` can
then be the entrypoint for `ExtendedNominalRequest` and assumes that
extension binding has already run. This avoids needing to fake the
dependency relationship in the DeclChecker.
The first bug is that we weren't computing isolation correctly for
nested defers. This is an unlikely pattern of code, but it's good to fix.
The second bug is that getActorIsolationOfContext was looking through
defers, but getActorIsolation itself was not. This was causing defer
bodies to be emitted in SILGen without an isolation parameter, which
meant that #isolation could not possibly provide the right value. Fixing
this involves teaching SILGen that non-async functions can have
nonisolated(nonsending) isolation, but that's relatively straightforward.
This commit doesn't fix #isolation or adequately test SILGen, but that'll
be handled in a follow-up.
Add the extra logic to `VarDecl::getParentPattern` necessary to
handle fallthrough and case body variables instead. This also changes
the behavior for case body vars - previously we would return the first
pattern in the CaseStmt, but that's not necessarily correct. Instead,
return the first pattern that actually binds the variable.
Part of the Embedded Swift linkage model, this attribute ensures that
the function it applies to has a strong definition in its owning
module, and that its SIL is never serialized. That way, other modules
will not have access to its definition.
Implements rdar://158364184.
Conditionally available opaque return types should support availability
conditions that are evaluated in any availability domain. Update
`ConditionallyAvailableSubstitutions` to model its conditions with
`AvailabilityQuery` instead of assuming that conditions are always a single
version query for the current platform.
When MemberImportVisibility is enabled we failed to find certain base
methods from the extensions when said base methods are imported from
C++.
rdar://154887575
This is an accepted spelling for the attribute. This commit
also renames the feature flag from `ExtensibleAttribute` to
`NonexhaustiveAttribute` to match the spelling of the attribute.
If we fail to resolve the value type for a value generic parameter,
previously we would have returned a null Type, causing crashes
downstream. Instead, return an ErrorType, leaving a null Type for
cases where the generic parameter isn't a value generic at all.
rdar://154856417
Resolves rdar://152598492
Consider the following Swift, adapted from a real-world framework:
```swift
@available(macOS 10.8, *)
@_originallyDefinedIn(module: "another", macOS 11.0)
public struct SimpleStruct {}
@available(macOS 12.0, iOS 13.0, *)
public extension SimpleStruct {
struct InnerStruct {}
}
```
In this scenario, `SimpleStruct` was originally in a module called
`another`, but was migrated to this module around the time of macOS
11.0. Since then, the module was ported to iOS and gained a nested type
`SimpleStruct.InnerStruct`. When mangling USRs for this nested type, the
result differs depending on whether we're targeting macOS or iOS.
They're mostly the same, but the macOS build yields a USR with an `AAE`
infix, designating that the `InnerStruct` was defined in an extension
from a module with the name of the base module. On iOS, this infix does
not exist.
The reason this is happening is because of the implementation of
`getAlternateModuleName` checking the availability spec in the
`@_originallyDefinedIn` attribute against the currently active target.
If the target matches the spec, then the alternate module name is
reported, otherwise the real module name is. Since the iOS build reports
the real module name, the mangling code doesn't bother including the
extension-context infix, instead just opting to include the parent
type's name and moving on.
This PR routes around this issue by passing the
`RespectOriginallyDefinedIn` variable to the
`ExtensionDecl::isInSameDefiningModule` method, and using that to skip
the alternate module name entirely. It also sets
`RespectOriginallyDefinedIn` to `false` in more places when mangling
USRs, but i'm not 100% confident that it was all necessary. The goal was
to make USRs more consistent across platforms, regardless of the
surrounding context.