Using a virutal output backend to capture all the outputs from
swift-frontend invocation. This allows redirecting and/or mirroring
compiler outputs to multiple location using different OutputBackend.
As an example usage for the virtual outputs, teach swift compiler to
check its output determinism by running the compiler invocation
twice and compare the hash of all its outputs.
Virtual output will be used to enable caching in the future.
This disables TBD validation when C++ interop is enabled, unless an explicit `-validate-tbd-against-ir=` flag was passed.
rdar://83405989 / https://github.com/apple/swift/issues/56458
The functionality for this flag is no longer necessary because the emit module jobs for deprecated architectures no longer use an artificially low deployment target.
Resolves rdar://104758113
The frontend option '-clang-header-expose-module' allows the user to specify that APIs from an imported module have been exposed in another generated header, and thus APIs that depend on them can be safely exposed in the current generated header.
This mode allows the user to fallback to the old behavior that required @expose annotations, while still having standard library interfaces emitted in one header
Introduce a new flag `-export-as` to specify a name used to identify the
target module in swiftinterfaces. This provides an analoguous feature
for Swift module as Clang's `export_as` feature.
In practice it should be used when a lower level module `MyKitCore` is
desired to be shown publicly as a downstream module `MyKit`. This should
be used in conjunction with `@_exported import MyKitCore` from `MyKit`
that allows clients to refer to all services as being part of `MyKit`,
while the new `-export-as MyKit` from `MyKitCore` will ensure that the
clients swiftinterfaces also use the `MyKit` name for all services.
In the current implementation, the export-as name is used in the
module's clients and not in the declarer's swiftinterface (e.g.
`MyKitCore`'s swiftinterface still uses the `MyKitCore` module name).
This way the module swiftinterface can be verified. In the future, we
may want a similar behavior for other modules in between `MyKitCore` and
`MyKit` as verifying a swiftinterface referencing `MyKit` without it
being imported would fail.
rdar://103888618
Currently headers produced with `-emit-objc-header` /
`-emit-objc-header-path` produce headers that include modular imports.
If the consumer wishes to operate without modules enabled, these headers
cannot be used. This patch introduces a new flag
(`-emit-clang-header-nonmodular-includes`) that when enabled
attempts to argument each modular import included in such a header with
a set of equivalent textual imports.
`getValue` -> `value`
`getValueOr` -> `value_or`
`hasValue` -> `has_value`
`map` -> `transform`
The old API will be deprecated in the rebranch.
To avoid merge conflicts, use the new API already in the main branch.
rdar://102362022
Currently headers produced with `-emit-objc-header` /
`-emit-objc-header-path` produce headers that include modular imports.
If the consumer wishes to operate without modules enabled, these headers
cannot be used. This patch introduces a new flag
(`-emit-clang-header-nonmodular-includes`) that when enabled
attempts to argument each modular import included in such a header with
a set of equivalent textual imports.
This change removes the -emit-cxx-header option, and adds a new -emit-clang-header-path option instead. It's aliased to -emit-objc-header-path for now, but in the future, -emit-objc-header-path will alias to it. After this change Swift can start emitting a single header file that can be expose declarations to C, Objective-C, or C++. For now C++ interface is generated (for all public decls) only when -enable-cxx-interop flag is passed, but that behavior will change once attribute is supported.
ABI descriptors should always be emitted as sidecars for library-evolution-enabled modules.
However, generating these files requires traversing the entire module (like indexing), which may
hit additional deserialization issues. To unblock builds, this patch introduces a flag to skip
the traversing logic so that we emit an empty ABI descriptor file. The empty file serves as
a placeholder so that build system doesn't need to know the details.
Add new `-print-ast-decl` frontend option for only printing declarations,
to match existing behavior.
Some tests want to print the AST, but don't care about expressions.
The existing `-print-ast` option now prints function bodies and expressions.
Not all expressions are printed yet, but most common ones are.
We noticed some Swift clients rely on the serialized search paths in the module to
find dependencies and droping these paths altogether can lead to build failures like
rdar://85840921.
This change teaches the serialization to obfuscate the search paths and the deserialization
to recover them. This allows clients to keep accessing these paths without exposing
them when shipping the module to other users.
We've recently added the -experimental-hermetic-seal-at-link compiler flag,
which turns on aggressive dead-stripping optimizations and assumes that library
code can be optimized against client code because all users of the library
code/types are present at link/LTO time. This means that any module that's
built with -experimental-hermetic-seal-at-link requires all clients of this
module to also use -experimental-hermetic-seal-at-link. This PR enforces that
by storing a bit in the serialized module, and checking the bit when importing
modules.
Ideally, module interface verification should fail the build when fatal error occurs when
type checking emitted module interfaces. However, we found it's hard to stage this phase in
because the ideal case requires all Swift adopters to have valid interfaces. This new front-end flag allows
driver to downgrade all interface verification errors to warnings as an intermediate step.
This additional supplement output should capture semantic info the compiler has
captured while building a Swift module. Similar to the source info file, the content of
the semantic info file should only be consumed by local tooling written in Swift.
This commit adds a new frontend flag that applies debug path prefixing to the
paths serialized in swiftmodule files. This makes it possible to use swiftmodule
files that have been built on different machines by applying the inverse map
when debugging, in a similar fashion to source path prefixing.
The inverse mapping in LLDB will be handled in a follow up PR.
Second pass at #39138
Tests updated to handle windows path separators.
This reverts commit f5aa95b381.