C++ interop is now enabled in SwiftCompilerSources, so we can remove some of the C bridging layer and use C++ classes directly from Swift.
rdar://83361087
Removes redundant ObjectiveC <-> Swift bridging calls.
Basically, if a value is bridged from ObjectiveC to Swift an then back to ObjectiveC again, then just re-use the original ObjectiveC value.
Also in this commit: add an additional DCE pass before ownership elimination. It can cleanup dead code which is left behind by the ObjCBridgingOptimization.
rdar://89987440
To use new C++ interop features in SwiftCompilerSources, we need a very recent Swift compiler when building with host tools.
This does not affect non-HOSTTOOLS builds.
To use _RegexParser from SwiftSyntax.
* Create 'libswiftCompilerModules_SwiftSyntax.a' which is a subset of
'libswiftCompilerModules.a'
* Link 'lib_InternalSwiftSyntaxParser' to
'libswiftCompilerModules_SwiftSyntax.a'
* Factor out swift runtime linking logic in CMake so that dynamic
libraries can link to Swift runtime, in addition to executables
* Link 'lib_InternalSwiftSyntaxParser' to swift runtime
Some code in SwiftCompilerSources, especially the parts that use C++ interop, triggers bugs in older versions of the Swift compiler. To make sure that `HOSTTOOLS` builds don't produce obscure compiler errors or crashes, let's require a relatively new Swift compiler for `HOSTTOOLS` build.
This fixes a dangling pointer issue when creating a `Swift.String` from `std::string`.
Also fixes a warning:
```
warning: variable 's' was never mutated; consider changing to 'let' constant
var s = SILBasicBlock_debugDescription(bridged)
~~~ ^
let
```
rdar://92963081
rdar://93053488
Utilities to make a value available to be used in another basic block.
Inserts required `copy_value` and `destroy_value` operations in case the destination block is in a different control region than the value.
For example, if the destination block is in a loop while the value is not in that loop, the value has to be copied for each loop iteration.
* split the PassUtils.swift file into PassContext.swift and Passes.swift
* rework `Builder` bridging allowing more insertion point variations, e.g. inserting at the end of a block.
* add Builder.create functions for more instructions
* add `PassContext.splitBlock`
* move SIL modification functions from PassContext to extensions of the relevant types (e.g. instructions).
* rename `Location.bridgedLocation` -> `Location.bridged`
and introduce the StringRef struct.
It's more efficient.
Also, rename the `HasName` protocol to `HasShortDescription`, which introduces the new requirement `shortDescription`. This is need because `name` now has `StringRef` type and not `String` anymore
`Package.swift` in the build directory and symlinking Sources directory
wasn't great for source control and break points. Since C modules doesn't
need the generated headers at this point, make `Package.swift` static
again with a symlink to the string processing source directory.
Previously, it used ${CMAKE_CURRENT_BINARY_DIR} as the package
directory. However, since that directory contains all build artifacts so
opening it in Xcode shows those unnecessary files.
Intead of using ${CMAKE_CURRENT_BINARY_DIR}, create its own directory in
the root build directory.
Since libstdc++ doesn't come with a Clang modulemap, Swift provides its own modulemap for libstdc++. This change makes the modulemap available while building SwiftCompilerSources.
Add a flag `analyzeAddresses` for distinguishing address vs value escape analysis. This is simpler than handling that in the visitUse/visitDef closures.
Also, fix a related bug, which let an address, which is escaping to a function, get unnoticed.
This fixes:
* An issue where the diagnostic messages were leaked
* Diagnose at correct position inside the regex literal
To do this:
* Introduce 'Parse' SwiftCompiler module that is a bridging layer
between '_CompilerRegexParser' and C++ libParse
* Move libswiftParseRegexLiteral and libswiftLexRegexLiteral to 'Parse'
Also this change makes 'SwiftCompilerSources/Package.swift' be configured
by CMake so it can actually be built with 'swift-build'.
rdar://92187284