The previous message was just suggesting unchecked Sendable, but instead
we should be suggesting to add final to the class. We also don't
outright suggest using unchecked Sendable -- following
https://github.com/swiftlang/swift/pull/81738 precedent.
Resolves rdar://155790695
Since LayoutPrespecialization has been enabled by default in all compiler
invocations for quite some time, it doesn't make sense for it to be treated as
experimental feature. Make it a baseline feature and remove all the
checks for it from the compiler.
`@_inheritActorContext` is a form of isolation which precludes
direct use of inference of `nonisolated(nonsending)` and `@concurrent`
just like other isolation attributes/modifiers would i.e. `isolated`
or `@isolated(any)`.
Forming an isolated conformance to a SendableMetatype-inherting
protocol opens up a soundness hole any time the conformance is used.
Reword the recently-introduced diagnostic for this case and promote it
to an error (except when it's preconcurrency).
Fixes rdar://154808002.
When querying a Swift module, the scanner now also keeps track of all discovered candidate binary modules which are not compatible with current compilation.
- If a Swift dependency is successfully resolved to a compatible binary module or a textual interface, a warning is emitted for every incompatible binary Swift module discovered along the way.
- If a Swift dependency is not resolved, but incompatible module candidates were found, an error is emitted - while it is likely that the scan would fail downstream, it is also possible that an underlying Clang module dependency (with the same name) is successfuly resolved and the Swift lookup failure is ignored, which is still going to lead to failures most of the time if the client code assumes the presence of the Swift overlay module in this scenario.
This change refactors common error reporting by the scanner into a 'ModuleDependencyIssueReporter' class, which also keeps track of all diagnosed failed lookups to avoid repeating diagnostics.
An isolated conformance to a SendableMetatype-inheriting protocol
cannot actually be used in generic code, because the SendableMetatype
requirement itself prevents it. Warn about this case so folks aren't
surprised at runtime.
This is a part of issue #82550 / rdar://154437489.
This is an accepted spelling for the attribute. This commit
also renames the feature flag from `ExtensibleAttribute` to
`NonexhaustiveAttribute` to match the spelling of the attribute.
Serialization and IRGen don't yet support opaque return types that would depend
on querying availability of a custom domain so we need to reject this code to
avoid mis-compiling it.
It's shouldn't be possible to use these attributes directly on
the function type that is `@isolated(any)` as per SE-0461 proposal
but it shouldn't preclude declarations that have parameters with
`@isolated(any)` from using them.
Resolves: rdar://154754939
Non-escapable struct definitions often have inicidental integer fields that are
unrelated to lifetime. Without an explicit initializer, the compiler would infer
these fields to be borrowed by the implicit intializer.
struct CountedSpan: ~Escapable {
let span: Span<Int>
let i: Int
/* infer: @lifetime(copy span, borrow i) init(...) */
}
This was done because
- we always want to infer lifetimes of synthesized code if possible
- inferring a borrow dependence is always conservative
But this was the wrong decision because it inevitabely results in lifetime
diagnostic errors elsewhere in the code that can't be tracked down at the use
site:
let span = CountedSpan(span: span, i: 3) // ERROR: span depends on the lifetime of this value
Instead, force the author of the data type to specify whether the type actually
depends on trivial fields or not. Such as:
struct CountedSpan: ~Escapable {
let span: Span<Int>
let i: Int
@lifetime(copy span) init(...) { ... }
}
This fix enables stricter diagnostics, so we need it in 6.2.
Fixes rdar://152130977 ([nonescapable] confusing diagnostic message when a
synthesized initializer generates dependence on an Int parameter)
Correctly diagnose this as:
"invalid use of inout dependence on the same inout parameter
@_lifetime(a: &a)
func f_inout_useless(a: inout MutableRawSpan) {}
Correctly diagnose this as:
"lifetime-dependent parameter must be 'inout'":
@_lifetime(a: borrow a)
func f_inout_useless(a: borrowing MutableRawSpan) {}
This comes up often when passing a MutableSpan as an 'inout' argument. The
vague diagnostic was causing developers to attempt incorrect @_lifetime
annotations. Be clear about why the annotation is needed and which annotation
should be used.
'@preconcurrency' imports open up memory safety holes with respect to
Sendable, which are diagnosed under strict memory safety + strict
concurrency checking. Allow one to write '@unsafe' on those imports to
silence the diagnostic about it.
The concrete nesting limit, which defaults to 30, catches
things like A == G<A>. However, with something like
A == (A, A), you end up with an exponential problem size
before you hit the limit.
Add two new limits.
The first is the total size of the concrete type, counting
all leaves, which defaults to 4000. It can be set with the
-requirement-machine-max-concrete-size= frontend flag.
The second avoids an assertion in addTypeDifference() which
can be hit if a certain counter overflows before any other
limit is breached. This also defaults to 4000 and can be set
with the -requirement-machine-max-type-differences= frontend flag.
Initially, the compiler rejected building dependencies that contained OS
versions in an invalid range. However, this happens to be quite
disruptive, so instead allow it and request that these versions be
implicitly bumped based on what `llvm::Triple::getCanonicalVersionForOS`
computes.
resolves: rdar://153205856
@cdecl enums are Swift enums representable in C. These enums must have
an integer raw type. They can be referenced from @cdecl functions and
@objc methods. @objc enums are still rejected from @cdecl functions.
When the CustomAvailability experimental feature is enabled, make it an error
to specify an unrecognized availability domain name. Also, add these
diagnostics to a diagnostic group so that developers can control their behavior
when they are warnings.
Resolves rdar://152741624.
Currently the note is going to point to the "callee" but that is
incorrect when the failure is related to an argument of a call.
Detect this situation in `RValueTreatedAsLValueFailure::diagnoseAsNote`
and produce a correct note.
Resolves: rdar://150689994