The reason why I am doing this is that this was not part of the original
evolution proposal (it was called an extension) and after some discussion it was
realized that partial consumption would benefit from discussion on the forums.
rdar://111353459
One can still in resilient frameworks have noncopyable frozen types.
This means that one cannot make a noncopyable:
1. Full resilient public type.
2. @usableFromInline type.
NOTE: One can still use a frozen noncopyable type as a usableFromInline class
field. I validated in the attached tests that we get the correct code
generation.
I also eliminated a small bug in TypeCheckDeclPrimary where we weren't using a
requestified attr check and instead were checking directly.
rdar://111125845
* Add @_used and @_section attributes for global variables and top-level functions
This adds:
- @_used attribute that flags as a global variable or a top-level function as
"do not dead-strip" via llvm.used, roughly the equivalent of
__attribute__((used)) in C/C++.
- @_section("...") attribute that places a global variable or a top-level
function into a section with that name, roughly the equivalent of
__attribute__((section("..."))) in C/C++.
* [ModuleInterface] Add mechanism to exclude experimental flags from the module interface
rdar://109722548
* Separate filtered flags from the typical/unfiltered case
Introduce a new experimental feature `ASTGenTypes` that uses ASTGen to
translate the Swift syntax tree (produced by the new Swift parser)
into C++ `TypeRepr` nodes instead of having the C++ parser create the
nodes.
The approach here is to intercept the C++ parser's `parseType`
operation to find the Swift syntax node at the given position (where
the lexer currently is) and have ASTGen translate that into the
corresponding C++ AST node. Then, we spin the lexer forward to the
token immediately following the end of the syntax node and continue
parsing.
The new LexicalLifetimes suppressible language feature results in
declarations annotated with @_eagerMove, @_noEagerMove, and
@_lexicalLifetimes to be printed with that attribute when it's available
and without it when it's not.
We were enabling the `$Macros` feature unconditionally, even when the
compiler itself doesn't support macros (because it's missing
swift-syntax). Change this to only enable the feature when the
compiler supports it.
The reason why we are doing this is that:
1. For non-copyable types, switches are always at +1 for now.
2. non-copyable enums with deinits cannot be switched upon since that would
invalidate the deinit.
So deinits on non-copyable enums are just not useful at this point since you
cannot open the enum.
Once we make it so that you can bind a non-copyable enum at +0, we will
remove this check.
I added an experimental feature MoveOnlyEnumDeinits so tests that validate the
codegen/etc will still work.
rdar://101651138
I want to reserve Feature::MoveOnly only for move-only types and other
things that are part of SE-390. Other prototyped features like
noimplicitcopy and some older names for consume were left behind
as guarded by this Feature. That's really not the right way to do it,
as people will expect that the feature is enabled all the time, which
would put those unofficial features into on-by-default. So this change
introduces two new Features to guard those unofficial features.
I enabled move-only types by default, but I didn't
realize that the `Feature::MoveOnly` needs to graduate
into a `LANGUAGE_FEATURE` so that `EvaluateIfConfigCondition`
will recognize `$MoveOnly` as being true.
fixes rdar://107050387
* [IRGen] Add layout strings for generic and resilient types
rdar://105837048
* Add some corner cases
* Add flag to enable generic instantiation and some fixes
* Fix resilient types
* Fix metadata accessor function pointers in combined layout strings
rdar://105837040
* WIP: Store layout string in type metadata
* WIP: More cases working
* WIP: Layout strings almost working
* Add layout string pointer to struct metadata
* Fetch bytecode layout strings from metadata in runtime
* More efficient bytecode layout
* Add support for interpreted generics in layout strings
* Layout string instantiation, take and more
* Remove duplicate information from layout strings
* Include size of previous object in next objects offset to reduce number of increments at runtime
* Add support for existentials
* Build type layout strings with StructBuilder to support target sizes and metadata pointers
* Add support for resilient types
* Properly cache layout strings in compiler
* Generic resilient types working
* Non-generic resilient types working
* Instantiate resilient type in layout when possible
* Fix a few issues around alignment and signing
* Disable generics, fix static alignment
* Fix MultiPayloadEnum size when no extra tag is necessary
* Fixes after rebase
* Cleanup
* Fix most tests
* Fix objcImplementattion and non-Darwin builds
* Fix BytecodeLayouts on non-Darwin
* Fix Linux build
* Fix sizes in linux tests
* Sign layout string pointers
* Use nullptr instead of debug value
This will be enabled by default in Swift 6, but can now also be enabled by passing `-enable-upcoming-feature DisableActorInferenceFromPropertyWrapperUsage` to the compiler.