The three options are now:
* `explicit`: Enforce Sendable constraints where it has been explicitly adopted and perform actor-isolation checking wherever code has adopted concurrency. (This is the default)
* `targeted`: Enforce Sendable constraints and perform actor-isolation checking wherever code has adopted concurrency, including code that has explicitly adopted Sendable.
* `complete`: Enforce Sendable constraints and actor-isolation checking throughout the entire module.
Replace `-warn-concurrency` with a more granular option
`-swift-concurrency=`, where the developer can select one of three
different "modes":
* `off` disables `Sendable` checking for most cases. (This is the Swift
5.5 and Swift 5.6 behavior.)
* `limited` enables `Sendable` checking within code that has adopted
Swift concurrency. (This is currently the default behavior.)
* `on` enables `Sendable` and other concurrency checking throughout
the module. (This is equivalent to `-warn-concurrency` now).
There is currently no distinction between `off` and `limited`. That
will come soon.
Implements the flag part of rdar://91930849.
After the rename of the `enable-cxx-interop` option to `enable-experimental-cxx-interop` it was no longer possible to build with installed tools.
This change re-introduces the `enable-cxx-interop` option for backward compatibility
We add a new flag to disable the implicit import of `_StringProcessing`, similar to `-disable-implicit-concurrency-module-import`. We need this to build `_RegexParser` when `-enable-experimental-string-processing` is enabled by default, because `_StringProcessing` currently imports `_RegexParser` publicly (non-implementation-only).
This flag biases the overload checker in favor of selecting an
asynchronous main function over a synchronous main. If no asynchronous
main function exists, a synchronous one will still be selected.
Likewise, if the flag is not passed and there are only asynchronous main
functions available, the most specific asynchronous main function will
still be selected.
- Add driver and frontend option
- Add LangOptions entry
- Ensure driver propagates flag to frontends
- Add feature to `features.json`
Part of rdar://91119995
Complete support is behind a flag, because it can result in a non-convergent
rewrite system if the opaque result type has a recursive conformance of its
own (eg, `some View` for SwiftUI's View protocol).
Without the flag, it's good enough for simple examples; you just can't have
a requirement that mentions a nested type of a type parameter equated to
the concrete type.
Fixes rdar://problem/88135291, https://bugs.swift.org/browse/SR-15983.
This change removes the -emit-cxx-header option, and adds a new -emit-clang-header-path option instead. It's aliased to -emit-objc-header-path for now, but in the future, -emit-objc-header-path will alias to it. After this change Swift can start emitting a single header file that can be expose declarations to C, Objective-C, or C++. For now C++ interface is generated (for all public decls) only when -enable-cxx-interop flag is passed, but that behavior will change once attribute is supported.
See the comment at the top of ConcreteContraction.cpp for a detailed explanation.
This can be turned off with the -disable-requirement-machine-concrete-contraction
pass, mostly meant for testing. A few tests now run with this pass both enabled
and disabled, to exercise code paths which are otherwise trivially avoided by
concrete contraction.
Fixes rdar://problem/88135912.
ABI descriptors should always be emitted as sidecars for library-evolution-enabled modules.
However, generating these files requires traversing the entire module (like indexing), which may
hit additional deserialization issues. To unblock builds, this patch introduces a flag to skip
the traversing logic so that we emit an empty ABI descriptor file. The empty file serves as
a placeholder so that build system doesn't need to know the details.