This corresponds to the parameter-passing convention of the Itanium C++
ABI, in which the argument is passed indirectly and possibly modified,
but not destroyed, by the callee.
@in_cxx is handled the same way as @in in callers and @in_guaranteed in
callees. OwnershipModelEliminator emits the call to destroy_addr that is
needed to destroy the argument in the caller.
rdar://122707697
Create two versions of the following functions:
isConsumedParameter
isGuaranteedParameter
SILParameterInfo::isConsumed
SILParameterInfo::isGuaranteed
SILArgumentConvention::isOwnedConvention
SILArgumentConvention::isGuaranteedConvention
These changes will be needed when we add a new convention for
non-trivial C++ types as the functions will return different answers
depending on whether they are called for the caller or the callee. This
commit doesn't change any functionality.
- SILPackType carries whether the elements are stored directly
in the pack, which we're not currently using in the lowering,
but it's probably something we'll want in the final ABI.
Having this also makes it clear that we're doing the right
thing with substitution and element lowering. I also toyed
with making this a scalar type, which made it necessary in
various places, although eventually I pulled back to the
design where we always use packs as addresses.
- Pack boundaries are a core ABI concept, so the lowering has
to wrap parameter pack expansions up as packs. There are huge
unimplemented holes here where the abstraction pattern will
need to tell us how many elements to gather into the pack,
but a naive approach is good enough to get things off the
ground.
- Pack conventions are related to the existing parameter and
result conventions, but they're different on enough grounds
that they deserve to be separated.
This is the first in a series of patches that reworks
EscapeAnalysis. For this patch, I extracted every change that does not
introduce new features, rewrite logic, or appear to change
functionality.
These cleanups were done in preparation for:
- adding a graph representation for reference counted objects
- rewriting parts to the query logic
- ...which then allows the analysis to safely assume that all
exclusive arguments are unique
- ...which then allows more aggressive optimization of local variables
that don't escape
There are two possible functional changes:
1. getUnderlyingAddressRoot in InstructionUtils now sees through OSSA
instructions: begin_borrow and copy_value
2. The getPointerBase helper in EscapeAnalysis now sees through all of
these reference and pointer casts:
+ case ValueKind::UncheckedRefCastInst:
+ case ValueKind::ConvertFunctionInst:
+ case ValueKind::UpcastInst:
+ case ValueKind::InitExistentialRefInst:
+ case ValueKind::OpenExistentialRefInst:
+ case ValueKind::RawPointerToRefInst:
+ case ValueKind::RefToRawPointerInst:
+ case ValueKind::RefToBridgeObjectInst:
+ case ValueKind::BridgeObjectToRefInst:
+ case ValueKind::UncheckedAddrCastInst:
+ case ValueKind::UnconditionalCheckedCastInst:
+ case ValueKind::RefTo##Name##Inst:
+ case ValueKind::Name##ToRefInst:
This coalesces a whole bunch of nodes together that were just there
because of casts. The existing code was already doing this for one
level of casts, but there was a bug that prevented it from happening
transitively. So, in theory, anything that breaks with this fix could
also break without this fix, but may not have been exposed. The fact
that this analysis coalesces address-to-reference casts at all is what
caused me to spent vast amounts of time debugging any time I tried to
force some structure on the graph via assertions. If it is done at
all, it should be done everywhere consistently to expose issues as
early as possible.
Here is a description of the changes in diff order. If something in
the diff is not listed here, then the code probably just moved around
in the file:
Rename isNotAliasedIndirectParameter to
isExclusiveIndirectParameter. The argument may be aliased in the
caller's scope and it's contents may have already escaped.
Add comments to SILType APIs (isTrivial, isReferenceCounted) that give
answers about the AST type which don't really make sense for address
SILTypes.
Add comments about CGNode's 'Value' field. I spent lots of time
attempting to tighten this down with asserts, but it's only possible
for non-content nodes. For content nodes, the node's value is highly
unpredictable and basically nonsense but needed for debugging.
Add comments about not assuming that the content nodes pointsTo edge
represents physical indirection. This matters when reasoning about
aliasing and it's a tempting assumption to make.
Add a CGNode::mergeProperties placeholder for adding node properties.
Factor out a CGNode::canAddDeferred helper for use later.
Rename `setPointsTo` to `setPointsToEdge` because it actually creates
an edge rather than just setting `pointsTo`.
Add CGNode::getValue() and related helpers to help maintain invariants.
Factor out a `markEscaping` helper.
Clean up the `escapesInsideFunction` helper.
Add node visitor helpers: visitSuccessors, visitDefers. This made is
much easier to prototype utilities.
Add comments to clarify the `pointsTo` invariant. In particular, an
entire defer web may have a null pointsTo for a while.
Add an `activeWorklist` to avoid nasty bugs when composing multiple
helpers that each use the worklist.
Remove the `EA` argument from `getNode`. I ended up needing access to
the `EA` context from the ConnectionGraph many times during
prototyping and passing `this` was all the `getNode` calls was very
silly.
Add graph visitor helpers: backwardTraverse, forwardTraverseDefer,
forwardTraversePointsToEdges, and mayReach for ease in developing new
logic and utilities.
Add isExclusiveArgument helper and distinguish exclusive arguments
from local objects. Confusing these properties could lead to scary
bugs. For example, unlike a local object, an exclusive argument's
contents may still escape even when the content's connection graph
node is non-escaping!
Add isUniquelyIdentified helper when we want to treat exclusive
arguments and local objects uniformly.
getUnderlyingAddressRoot now looks through OSSA instructions.
Rename `getAccessedMemory` to `getDirectlyAccessedMemory` with
comments. This is another dangerous API because it assumes the memory
access to a given address won't touch memory represented by different
graph nodes, but graph edges don't necessarily represent physical
indirection. Further clarify this issue in comments in
AliasAnalysis.cpp.
Factor out a 'findRecursiveRefType' helper from the old
'mayContainReference' for checking whether types may or must contain
references. Support both kinds of queries so the analysis can be
certain when a pointer's content is a physical heap object.
Factor out 'getPointerBase' and 'getPointerRoot' helpers that follow
address projections within what EscapeAnalysis will consider a single
node.
Create a CGNodeWorklist abstraction to safely formalize the worklist
mechanism that's used all over the place. In one place, there were
even two separate independent lists used independently (nodes added to
one list could appear to be in the other list).
The CGNodeMap abstraction did not significantly change, it was just moved.
Added 'dumpCG' for dumping .dot files making it possible to remote debug.
Added '-escapes-enable-graphwriter' option to dump .dot files, since
they are so much more useful than the textual dump of the connection
graph, which lacks node identity!
The problematic scenario is that a function receives an @in_guaranteed and @inout parameter where one is a copy of the other value. For example, when appending a container to itself.
In this case the optimization removed the copy_addr, resulting in passing the same stack location to both parameters.
rdar://problem/47632890
This is really an initializer, so use the initializer conventions. Today this is
NFC given the current convention. With +0 arguments, this is a different story
though.
Found by fixing SILGen tests for +0.
rdar://34222540
Separate formal lowered types from SIL types.
The SIL type of an argument will depend on the SIL module's conventions.
The module conventions are determined by the SIL stage and LangOpts.
Almost NFC, but specialized manglings are broken incidentally as a result of
fixes to the way passes handle book-keeping of aruments. The mangler is fixed in
the subsequent commit.
Otherwise, NFC is intended, but quite possible do to rewriting the logic in many
places.
This is dead code and can be re-added if it is needed. Right now though there
really isnt a ValueOwnershipKind that corresponds to deallocating and I do not
want to add a new ValueOwnershipKind for dead code.
This means using a struct so we can put methods on the struct and using an
anonymous enum to create namespaced values. Specifically:
struct SILArgumentConvention {
enum : uint8_t {
Indirect_In,
Indirect_In_Guaranteed,
Indirect_Inout,
Indirect_InoutAliasable,
Indirect_Out,
Direct_Owned,
Direct_Unowned,
Direct_Deallocating,
Direct_Guaranteed,
} Value;
SILArgumentConvention(decltype(Value) NewValue)
: Value(NewValue) {}
operator decltype(Value)() const {
return Value;
}
ParameterConvention getParameterConvention() const {
switch (Value) {
...
}
}
bool isIndirectConvention() const {
...
}
};
This allows for:
1. Avoiding abstraction leakage via the enum type. If someone wants to use
decltype as well, I think that is enough work that the leakage is acceptable.
2. Still refer to enum cases like we are working with an enum class
(e.g. SILArgumentConvention::Direct_Owned).
3. Avoid using the anonymous type in function arguments due to an implicit
conversion.
4. And most importantly... *drum roll* add methods to our enums!