One needs to pass in the explicit flag to enable this as well as
-debug-flag=send-non-sendable. This makes it easier to debug the affect of
applying specific partition ops.
Not every block in a region which begins with the non-lifetime-ending
boundary of a value and ending with unreachable-terminated blocks has
the value available. If the unreachable-terminated blocks in this
boundary are not available, it is incorrect to insert destroys of the
value in them: it is an overconsume on some paths. Previously,
however, destroys were simply being inserted at the unreachable.
Here, this is fixed by finding the boundary of availability within that
region and inserting destroys before the terminators of the blocks on
that boundary.
rdar://116255254
OSSALifetimeCompletion needs to insert not at unreachable instructions
that appear after the non-lifetime-ending boundary of a value but rather
at the terminators of the availability boundary of the value within that
region. Once it does so, it will no longer be sufficient to check
whether the insertion point is an unreachable because such terminators
may be another terminator that appears on the availability boundary.
Prepare for that by recording the instructions that were found and
checking whether the destroy insertion point is such an instruction
before bailing rather than specifically checking for `unreachable`.
Transfer is the terminology that we are using for something be transferred
across an isolation boundary, not consume. This also eliminates confusion with
consume which is a term being used around ownership.
When canonicalizing the lifetime of a lexical value, deinit barriers are
respected. This is done by walking backwards from lifetime ends and
adding encountered deinit barriers to liveness.
Only destroy lifetime ends were walked back from under the assumption
that lifetimes would be complete. Without complete OSSA lifetimes,
however, it's necessary to also necessary to consider lifetimes that end
with unreachables. Unfortunately, we can't simply walk back from those
unreachables because there may be instructions which are secretly users
of the value being canonicalized (e.g. destroys of `partial_apply`s to
which a `begin_borrow` of the value was passed). Such uses don't appear
in the use list because lifetime canonicalization expects complete
lifetimes and only visits lifetime ends of `begin_borrow`s.
Here, instead, the instructions before the relevant unreachables are
added to liveness. In order to determine which unreachables are
relevant, it's necessary to have a liveness that includes the original
destroys. So a copy of liveness is created and those destroys are added
to it.
rdar://115468707
Previously, we were not recognizing that a ref_element_addr from an actor object
is equivalent to the actor object and we shouldn't allow for it to be consumed.
rdar://115132118
Really, we should just be using representative values here in general since it
serves the same purpose and makes it easier to trace back values. But this in
the short term makes the output easier to reason about.
Specifically:
1. Converted llvm::errs() -> llvm::dbgs() when using LLVM_DEBUG.
2. Converted a dump method on errs to be a print method on dbgs that is called from dump with print(llvm::dbgs()).
- VTableSpecializer, a new pass that synthesizes a new vtable per each observed concrete type used
- Don't use full type metadata refs in embedded Swift
- Lazily emit specialized class metadata (LazySpecializedClassMetadata) in IRGen
- Don't emit regular class metadata for a class decl if it's generic (only emit the specialized metadata)
Without this fix, the new 'consuming' and 'borrowing' keywords cannot
be used with trivial types. Which means, for example, they can't be
used in macro expansions that work on various types.
Fixes patterns like:
public func test1(i: consuming Int) -> Int {
takeClosure { [i = copy i] in i }
}
public func test2(i: borrowing Int) -> Int {
takeClosure { [i = copy i] in i }
}
public func test3(i: consuming Int) -> Int {
takeClosure { i }
}
// Sadly, test4 is still incorrectly diagnosed.
public func test4(i: borrowing Int) -> Int {
takeClosure { i }
}
Fixes rdar://112795074 (Crash compiling function that has a macro annotation and uses `consuming`)
llvm::SmallSetVector changed semantics
(https://reviews.llvm.org/D152497) resulting in build failures in Swift.
The old semantics allowed usage of types that did not have an
`operator==` because `SmallDenseSet` uses `DenseSetInfo<T>::isEqual` to
determine equality. The new implementation switched to using
`std::find`, which internally uses `operator==`. This type is used
pretty frequently with `swift::Type`, which intentionally deletes
`operator==` as it is not the canonical type and therefore cannot be
compared in normal circumstances.
This patch adds a new type-alias to the Swift namespace that provides
the old semantic behavior for `SmallSetVector`. I've also gone through
and replaced usages of `llvm::SmallSetVector` with the
`Swift::SmallSetVector` in places where we're storing a type that
doesn't implement or explicitly deletes `operator==`. The changes to
`llvm::SmallSetVector` should improve compile-time performance, so I
left the `llvm::SmallSetVector` where possible.
Reformatting everything now that we have `llvm` namespaces. I've
separated this from the main commit to help manage merge-conflicts and
for making it a bit easier to read the mega-patch.