- Allow `SpecifyClosureReturnType` to be diagnosed in ambiguous context
- Add a tailoed diagnostic for when it's impossible to infer a type of
an empty closure
Resolves: rdar://88256059
Some implicit calls to `.callAsFunction` require that a new root
expression to be created for them in order to record argument list
and resolved overload choice.
Opaque opaque types and record them within the "opened types" of the
constraint system, then use that information to compute the set of
substitutions needed for the opaque type declaration using the normal
mechanism of the constraint solver. Record these substitutions within
the underlying-to-opaque conversion.
Use the recorded substitutions in the underlying-to-opaque conversion
to set the underlying substitutions for the opaque type declaration
itself, rather than reconstructing the substitutions in an ad hoc manner
that does not account for structural opaque result types.
Insert an implicit conversion from pack types to tuples with equivalent parallel structure. That means
1) The tuple must have the same arity
2) The tuple may not have any argument labels
3) The tuple may not have any variadic or inout components
4) The tuple must have the same element types as the pack
When evaluating whether code is within a closure that uses concurrency
features, use the type of the closure as it's known during type checking,
so that contextual information (e.g., it's passed to a `@Sendable` or
`async` parameter of function type) can affect the result. This
corrects the definition for doing strict checking within a minimal
context for the end result of the type-check, rather than it's initial
state, catching more issues.
Fixes SR-15131 / rdar://problem/82535088.
Use this to enable better detection of async contexts when determining
whether to diagnose problems with concurrency.
Part of SR-15131 / rdar://problem/82535088.
Closure result type or generic parameter associated with such a location
could bw inferred from a body of a multi-statement closure (when inference
is enabled), so we need to give closure a chance to run before attemtping
a hole for such positions in diagnostic mode.
When in "existing" Swift code that is Swift 5.x and has not adopted
concurrency, allow mismatches in function types that only involve
ABI-neutral concurrency changes (e.g., adding `@Sendable` or removing
a global actor) by downgrading the diagnostic to a warning. This
improves the story for incremental adoption of concurrency in an
existing code base.
As part of this, generalize the facility for downgrading an error to a
warning when performing diagnostics in the constraint solver, using the
new diagnostic behavior limits rather than duplicating diagnostics.
We need to modify the pointer pointing to the cancellation flag when reusing an ASTContext for code completion. This is not possible by the previous design because `TypeCheckerOptions` was `const`. Moving the cancellation flag to `ASTContext` will also allow other stages of the compiler to honor a cancellation request.
Despite being otherwise disconnected from the
constraint system, it's possible for it to affect
how we type-check tuple matches in certain cases.
This is due to the fact that:
- It can have a lower type variable ID than an
opened generic parameter type, so becomes the
representative when merged with it. And because it
has a different locator, this can influence
binding prioritization.
- Tuple subtyping is broken, as it's currently a
*weaker* relationship than conversion.
Therefore, temporarily restore this bit of logic
for language versions < 6. If possible, we should
try and fix tuple subtying in Swift 6 mode to not
accept label mismatches, so that it's not more
permissive than tuple conversion.
rdar://85263844
Closure result type or generic parameter associated with such a location
could bw inferred from a body of a multi-statement closure (when inference
is enabled), so we need to give closure a chance to run before attemtping
a hole for such positions in diagnostic mode.
Diagnostics cannot assume that solution would always be applied
to the constraint system, so all of the elements affected by the
mismatch have to be determined by the fix.
Resolves: rdar://85021348
If a type variable has a subtype binding which came from a conversion/subtype/equality
constraint to a struct or enum (expect to `AnyHashable`, `Unsafe{Mutable}RawPointer`),
attempt it early because that type is the only choice which is not going to fail such
constraint.
For example, in cases like `$T argument convertible to Int` type variable could
only be bound to `Int`, `Int!`, or `@lvalue Int` to satisfy that constraint, so
it would make sense to attempt to bind it to `Int` early if it doesn't represent
a result of a member lookup (that's how IUO and/or `@lvalue` could be inferred)`
and doesn't have any direct disjunction associated with it e.g. for coercion or
optional matching.
Caching the result here feels a little overkill as
it's only useful for one protocol, and the
`TypeChecker::getDefaultType` computation is
cached by the request evaluator.
For a non-public property where the type is defined by an assignment, like
`internal var internalAssigned = NewStruct()`, type-checking the type's
availability is done via checking the initializer expression.
In -check-api-availaiblity-only mode, pass down a flag to not check
availability in expressions for initializer expressions of such
non-public properties.
rdar://84389825